
Adaptive Toggling of Architectural Patterns for Federated
Learning

Luciano Baresi

luciano.baresi@polimi.it

Politecnico di Milano

Milan, Italy

Ivan Compagnucci

ivan.compagnucci@gssi.it

GSSI

L’Aquila, Italy

Livia Lestingi

livia.lestingi@polimi.it

Politecnico di Milano

Milan, Italy

Catia Trubiani

catia.trubiani@gssi.it

GSSI

L’Aquila, Italy

Abstract
Federated Learning (FL) is increasingly adopted as an alternative to

centralized Machine Learning (ML) techniques, as it allows clients

to preserve the privacy of their data. However, FL systems pose new

challenges in terms of adaptation, as design choices are conditioned

by client characteristics and network conditions, thus necessitating

adaptive strategies that elaborate on such a different operational

environment. Previous work introduces a set of architectural pat-

terns to support practitioners at design time, but their effectiveness

has only been investigated when statically activated throughout

the FL process. This work presents a novel FL framework, namely

FLiP, where a subset of the aforementioned patterns are dynami-

cally and adaptively toggled in response to evolving performance

metrics and boundary conditions. We empirically evaluate FLiP

across multiple federation configurations and two learning tasks,

considering both static and dynamic conditions. Results indicate

that dynamically toggling architectural patterns can be beneficial

under specific conditions, with cases leading to an improvement of

up to 10% in learning accuracy, at the cost of negligible overhead

at deployment time.

Keywords
Federated Learning, Architectural Patterns, Adaptive Pattern

ACM Reference Format:
Luciano Baresi, Ivan Compagnucci, Livia Lestingi, and Catia Trubiani. 2026.

Adaptive Toggling of Architectural Patterns for Federated Learning. In

21st International Conference on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ’26), April 13–14, 2026, Rio de Janeiro, Brazil.ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3788550.3794873

1 Introduction
Federated Learning (FL) is a distributed machine learning paradigm

that ensures data privacy by allowing multiple decentralized clients

to collaboratively train a global model without sharing raw data [20,

24]. Introduced byGoogle in 2016 [29], FL shifts computation locally,

where a group of clients trains a Machine Learning (ML) model

and sends only the trained parameters to a central server, which

aggregates them into a global model.

Typically, the architecture of the FL system is configured ex ante,
which means that the parameters and architecture design are de-

fined before system deployment and remain fixed [41]. In contrast,

This work is licensed under a Creative Commons Attribution 4.0 International License.

SEAMS ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2445-9/2026/04

https://doi.org/10.1145/3788550.3794873

dynamic FL [33] moves configurations at runtime to improve the

efficiency of the learning process [8].

A systematic literature review has recently identified the lack

of design approaches and proposed a collection of 14 architectural

patterns, organized into 4 categories, to overcome the problem and

provide commonly reusable design solutions [26]. Their effective-

ness has been evaluated when kept statically active throughout

the FL process [3, 9, 10], but more dynamism would allow max-

imizing various quality metrics. Each pattern entails a trade-off

between different quality metrics [27], which is not fully explored

when they are statically active or inactive throughout the entire

FL process. Consider, for instance, a retail company that trains a

demand forecasting model across geographically distributed stores

and adopts FL to avoid centralizing sensitive sales data. In the

early training phases, involving many clients (e.g., stores) increases

both the volume and diversity of training data, which can improve

model generalization, while excluding slower clients later on can

speed up convergence. Similarly, strategies such as data rebalancing

and communication compression are beneficial only under specific

conditions (e.g., skewed data distribution, congested network), mo-

tivating the adaptive toggling of architectural patterns at runtime.

Inspired by previous work [4, 11, 17], which demonstrated the

benefits of self-adaptive FL systems, this paper proposes to dynam-

ically and adaptively toggle FL architectural patterns at runtime.

The system dynamically adapts architectural design choices —in a

consistent way— to improve the effectiveness of FL. The general

idea is exemplified by selecting three patterns as representative of

different categories, specifically: (i) client-selector, which is a client
management pattern; (ii) heterogeneous-data-handler, which is a

model training pattern; and message-compressor, which is a model
management pattern. We do not consider the fourth group, since it

has a more radical impact on architecture (e.g., hierarchical or de-

centralized aggregation) that cannot be dynamically (de)activated.

This work proposes the adoption of a runtime controller that

adaptively toggles architectural patterns as the FL system evolves.

Treating FL evolution as a primary concern, it uses performance

indicators and boundary conditions to determine at runtime which

architectural solutions are most suitable. The controller is the key

component of FLiP, a novel framework that augments the reference

FL architecture to toggle architectural patterns at the beginning of

each FL round. Unlike previous work with static (de)activation, in

each round, FLiP decides which patterns to switch based on system

performance metrics and boundary conditions. The former provides

quantitative insights on how the FL application is performing and

whether this requires adjustments; the latter represents a proxy for

sources of uncertainty in the environment where the FL application

is deployed. Because each pattern comes with a trade-off in terms

https://orcid.org/0000-0001-6467-837X
https://orcid.org/0000-0002-1991-0579
https://orcid.org/0000-0001-8724-1541
https://orcid.org/0000-0002-7675-6942
https://doi.org/10.1145/3788550.3794873
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3788550.3794873

SEAMS ’26, April 13–14, 2026, Rio de Janeiro, Brazil Baresi et al.

of metrics it improves or worsens, FLiP digs into this trade-off by

identifying regions of the FL design and performance space where

activating a pattern is preferable to disable it.

FLiP builds on top of Flower [5], a well-consolidated FL frame-

work. The experimental validation of FLiP addresses three research

questions assessing the effectiveness of the framework, its offline

and online computational overhead. The results show that the pro-

posed framework achieves a statistically significant performance

gain of up to 10%. While the evaluation necessarily covers a limited

set of datasets and models, it helps assess the practical benefits

of adaptive architectural pattern toggling. In summary, the main

contributions of this paper are:

• The development of a framework that automates the application

of adaptive strategies to FL systems;

• The exemplification of adaptive strategies for three exemplar

architectural patterns from different categories;

• An empirical assessment of the proposed framework under rep-

resentative FL settings.

In the following, Section 2 outlines the preliminaries, Section 3

describes FLiP, Section 4 reports the experimental results, Section

5 surveys related work and Section 6 concludes the paper.

2 Preliminaries
This section describes the preliminaries that underlie our work.

2.1 Federated Learning in a Nutshell
Federated Learning (FL) enables collaborative training of ML mod-

els on data distributed across different devices (the clients), while

preserving the privacy of the data of each client. Training occurs

through interactions between clients and a server. The process is

iterative and lasts multiple rounds until a predetermined stopping

criterion holds (e.g., a predefined number of rounds has ended).

Initially, 1○ a central server broadcasts the global model parameters

(e.g., the model weights) to all participating clients. Upon receiving

these parameters, 2○ each client independently and locally trains

the model using its private dataset, without sharing any raw data

with the server. After completion of the local training, 3○ each

client returns the updated model parameters to the central server.

The server then 4○ aggregates these local updates, typically using

an information fusion algorithm such as FedAvg [29] to 5○ update

the global model. Subsequently, 1○ the newly aggregated global

model parameters are redistributed to the clients, initiating the next

training round.

2.2 FL Architectural Patterns
Architectural patterns offer reusable solutions for common design

challenges in complex systems [32]. Lo et al. [27] propose a set

of patterns tailored to FL, addressing macro areas such as client

management, model management, and model training, covering

these system dimensions with architectural solutions. In our study,

we select: the client-selector, the heterogeneous-data-handler, and
the message-compressor. The rationale for this choice is to target

different dimensions of FL systems.

Client Selector. The client-selector determines the subset of

clients that will participate in the round that is about to begin.

Selection criteria can be data-, resource-, or performance-driven [7,

27]. The server profiles each client (e.g., its CPU availability and

data distribution) and applies the selection criteria to include or

exclude clients.

Potential Impact of Adaptive Toggling. The pattern mitigates is-

sues due to limited resources, imbalanced data, and low-quality local

models, enhancing training efficiency and stability. However, hav-

ing the pattern active for all rounds permanently excludes clients,

preventing the system from leveraging additional computational

power (i.e., the clients that would be excluded by the selection

criteria) even when it could be beneficial.

Heterogeneous Data Handler. The goal of the heterogeneous-
data-handler is to mitigate issues due to a client having non-

independent and identically distributed (IID) data, which affects the

accuracy of themodel. To this end, the pattern applies either (𝑖) data
augmentation, which generates synthetic data to increase the diver-

sity and size of the local dataset through a Generative Adversarial

Network (GAN) [16, 39, 44], or (𝑖𝑖) federated distillation, which
shares knowledge among clients without accessing raw data [27].

These methods balance data distributions while preserving privacy

and avoiding centralized data collection [40].

Potential Impact of Adaptive Toggling.While improving the global

model accuracy, the heterogeneous-data-handler can cause a surge

in computational time to perform data augmentation.

Message Compressor. The message-compressor aims to re-

duce the communication time overhead by compressing the model

parameters exchanged between the server and clients. The pro-

cess develops in four phases [27]: the server compresses the model

weights and sends them to clients; clients decompress the received

parameters for local training; after training, clients compress their

updated parameters and return them to the server; the server de-

compresses the incoming updates for aggregation.

Potential Impact of Adaptive Toggling.Weight compression can

reduce communication overhead [42]. On the other hand, if the

network over which the client and server communicate is fast,

compression and decompression only cause additional overhead.

3 The FLiP Framework
The result of an FL run depends on several environmental and sys-

tem features, which constitute the semantic space. We refer to the

set of 𝑛 features in the semantic space as 𝑋 ⊂ R𝑛
. Table 1 summa-

rizes the features selected for this study. We refer to the set of𝑚

quality metrics selected for the FL system under analysis as𝑌 ⊂ R𝑚 .

The quality metrics selected for this work are listed in Table 1. For

example, the number of rounds represents a feature of FL, and the

duration of a round 𝑟 is a quality metric that denotes how long 𝑟

lasts. Each architectural pattern entails a trade-off between quality

metrics, e.g., the heterogeneous-data-handler favors accuracy but

comes with a computational cost [27]. The selection of the quality

metrics to measure the performance of an FL run derives from an

analysis of the requirements of the specific application: in some

cases, maximizing the accuracy of the model is the main concern;

in other cases, minimizing the training time is preferable [3, 27].

The novelty of FLiP consists in extending the reference archi-

tecture by introducing adaptive toggle switches (see Fig. 1) for the

selected patterns. When a manager component detects that the cur-

rent configuration of the semantic space is not the most favorable

Adaptive Toggling of Architectural Patterns for Federated Learning SEAMS ’26, April 13–14, 2026, Rio de Janeiro, Brazil

«subsystem»
Server

«subsystem»
Clienti

«artifact»
Aggregated
Parameters

<<creates>>

«artifact»
Local Data

Data
Lookup

Aggregate

Evaluate

Local
Model Evaluator

Train

Pattern
Toggling Manager

Evaluate

Create
Job

Global
Model Evaluator

Configure
Next Round

Job
Creator

Parameter
Lookup

Message
Compressor Client

Selector

x

Select
Clients

«artifact»
Client

Registry

Client Info
Lookup

Model
Aggregator

De-compress
Weights

Compress
Weights

x

x

Compress
Weights

x

x

De-compress
Weights

Message
Compressor

x
Heterogeneous

Data
Handler

Model
Trainer

Figure 1: Component diagram representing FLiP’s architecture (portions involving different patterns are colored accordingly).

for metrics 𝑌 , adaptation is triggered by flipping a pattern switch

(i.e., maintaining a favorable trend for metrics 𝑌 is the adaptation
goal). Specifically, we assume that the federation features a set𝐶 of

clients in total, while 𝑅 ∈ N represents the budget for FL rounds. Let

B denote the set {0, 1}. FLiP introduces controllable binary variable

T 𝑟
𝑖

∈ B with 𝑖 = 1 . . . |𝐶 | and 𝑟 = 1 . . . 𝑅 representing whether the

selected pattern is active for client 𝑖 at round 𝑟 (T 𝑟
𝑖

= 1) or not

(T 𝑟
𝑖

= 0). When the value of T 𝑟
𝑖

is set globally for all clients for

round 𝑟 , we use the simplified notationT 𝑟
. Note that the framework

currently supports one T 𝑟
variable at a time. Therefore, adaptation

involves only one pattern per FL run and the three patterns selected

for this study are analyzed independently of each other.

The reference architecture of Lo et al. for FL [26] features two

subsystems for the server and the client, whose components reflect

the operational workflow described in Section 2.1. Fig. 1 shows the

extended architecture with FLiP introducing the Pattern Toggling
Manager that plays the key role of determining whether the current

architectural setup requires adaptation, i.e., a specific pattern under

evaluation needs to be turned on or off. Adaptation decisions in

FLiP are managed centrally by the Pattern Toggling Manager on
the server side. At the beginning of each FL round, the server com-

municates the current configuration of the architectural patterns

to the clients as part of the round setup. Clients do not perform

adaptation decisions autonomously; instead, they react to the re-

ceived configuration by enabling or disabling the corresponding

pattern-specific components. No additional self-adaptation logic

nor infrastructure is introduced on the client side.

The value of T 𝑟
𝑖

is the output of a function 𝑡 : N2 × R𝑛 → B,
which the Pattern Toggling Manager embeds. The function 𝑡 takes

as input the round and client for which a decision must be made (𝑖 ∈
[1, |𝐶 |], 𝑟 ∈ [1, 𝑅]) and the vector 𝑥 ⊆ R𝑛

of 𝑛 values representing

the current configuration of the semantic space. Function 𝑡 embeds

the adaptation policy and 𝑥 contains everything the server knows

about the global model, the federation, and the environment in

which it is deployed at a specific moment and that can drive the

decision to change the toggle state of the pattern. Let 𝑥 and 𝑥 ′

be space configurations at the beginning of rounds 𝑟 − 1 and 𝑟 ,

respectively. When T 𝑟−1

𝑖
= 𝑡 (𝑖, 𝑟 −1, 𝑥) differs from T 𝑟

𝑖
= 𝑡 (𝑖, 𝑟 , 𝑥 ′),

T 𝑟−1

𝑖
→ T 𝑟

𝑖
is the adaptation action for client 𝑖 at round 𝑟 .

Table 1: Semantic space in FLiP’s problem formulation.

Symbol Description ∈ 𝑋/∈ 𝑌

𝑅 ∈ N Number of rounds ∈ 𝑋

RT𝑟 ∈ R+ Duration of round 𝑟 ∈ 𝑋 , ∈ 𝑌

𝐶 Available clients ∈ 𝑋

𝑅𝑒𝑠𝑐 Resources on client 𝑐 ∈ 𝑋

Nhigh ∈ N High-specification clients ∈ 𝑋

Nlow ∈ N Low-specification clients ∈ 𝑋

𝐶𝑟 ⊆ 𝐶 Clients selected for round 𝑟 ∈ 𝑋

𝐷𝑟
𝑖

Data available on client 𝑖 at round 𝑟 ∈ 𝑋

𝐽𝑆𝐷𝑟
𝑖
∈ [0, 1] JSD score for client 𝑖 at round 𝑟 ∈ 𝑋

CT𝑟
𝑖
∈ R+ Communication Time for client 𝑖 at round 𝑟 ∈ 𝑋/∈ 𝑌

𝑊 𝑟
𝑖
∈ M𝑚×𝑛×𝑝 (R) Weights sent by client 𝑖 at round 𝑟 ∈ 𝑋

F1
𝑟 ∈ R+ Global F1 score at round 𝑟 ∈ 𝑋/∈ 𝑌

T 𝑟
𝑖

∈ B Pattern toggle state for client 𝑖 at round 𝑟 -

Note that in FLiP, adaptation is managed centrally, which justi-

fies why the manager component is part of the server subsystem.

Therefore, the function 𝑡 can only reason on values that, according

to the FL paradigm, the server is allowed to know. For example,

adaptation cannot depend on how many samples a client holds for

a specific dataset class since the server is not aware of this.

3.1 Adaptation Drivers
Although the tool implementing FLiP allows for a flexible configu-

ration of the semantic space for a FL run, deciding which drivers

are most suited to each pattern requires additional reasoning. In

the following, we discuss the drivers for the selected patterns.

Client Selector. Out of the alternatives from Section 2.2, in

FLiP, we adopt a resource-based selection criterion [27], as per the

state of the art [9]. Specifically, we select clients according to their

computational power, that is, with a number of CPUs greater than

a predefined threshold. We refer to the subset of clients selected

for round 𝑟 as 𝐶𝑟 ⊆ 𝐶 and the amount of resources (e.g., CPUs)

available to client 𝑖 as 𝑅𝑒𝑠𝑖 ∈ N. With this selection criterion, client

𝑖 belongs to set 𝐶𝑟
if and only if 𝑅𝑒𝑠𝑖 is at least res

th
∈ N.

In this setting, deactivating the client-selector entails involv-
ing the entire federation in the upcoming round rather than fil-

tering out low-specification clients. The function 𝑡 , therefore, is

based on the ratio between the F1 score of the last round and

SEAMS ’26, April 13–14, 2026, Rio de Janeiro, Brazil Baresi et al.

its duration (F1
𝑟−1/RT𝑟−1

) and the number of high- and low-

specification clients available (Nhigh and Nlow, respectively, such

that Nhigh + Nlow = |𝐶 | holds). At a high level, the manager may

decide to deactivate the client-selector if the model performs below

expectations, and adding the low-specification clients back in (thus

employing additional resources) could improve the situation.

Since it affects the entire federation and not a specific client, the

adaptation of client-selector is managed at a global level (i.e., the

selection is on with T 𝑟 = 1, and off otherwise).

Heterogeneous Data Handler. FLiP applies data augmentation

to rebalance non-IID data on a client. When the heterogeneous-
data-handler is active for a client, a conditional GAN analyzes the

client’s distribution and creates class-specific samples accordingly

to rebalance the distribution [25]. The pattern thus generates high-

quality synthetic data to populate underrepresented classes.

However, these augmentation strategies entail significant time

overhead even when classes are only slightly unbalanced (which

would thus not affect the accuracy of the global model significantly).

Function 𝑡 is thus based on F1
𝑟−1

(if the global model performs

worse than expected, it justifies investing more time to improve

accuracy) and the degree of imbalance of each client. We measure

the deviation of the label distribution of a client from an IID distri-

bution using the Jensen–Shannon Divergence (JSD) metric [18]. Let

𝐷𝑟
𝑖
be the data available on client 𝑖 at round 𝑟 . We refer to client 𝑖’s

JSD score for round 𝑟 as 𝐽𝑆𝐷𝑟
𝑖
= 𝐽𝑆𝐷 (𝐷𝑟

𝑖
) ∈ [0, 1], where 𝐽𝑆𝐷𝑟

𝑖
= 1

means data distribution is identical to a perfectly balanced one.

In this case, the adaptation is handled client by client (T 𝑟
𝑖

= 1

implies that data will be rebalanced on client 𝑖 at round 𝑟).

Message Compressor. Let 𝑊 𝑟
𝑖
be the model weights at the

end of the training on client 𝑖 at round 𝑟 . In FLiP, the message-
compressor exploits the LZ77 compression algorithm, known for

its fast compression speeds and low resource usage [12], to com-

press and decompress𝑊 𝑟
𝑖
at every client-server communication

instance. Note that weight compression is bi-directional: if the

message-compressor is active, the server will try to decompress

the weights received from all clients and send compressed weights

to all clients. Therefore, adaptation is managed at a global level and

function 𝑡 reasons on the duration of the client-server communi-

cation phase for the previous round, indicated by

∑ |𝐶 |
𝑖=1

CT𝑟−1

𝑖
to

determine whether activating compression is beneficial.

3.2 Adaptation Policies
This section describes three possible implementations of the 𝑡 adap-

tation function, i.e., three adaptation policies for the FLiP frame-

work. We recall that, in our formulation, quality metrics 𝑌 depend

on observable but partially stochastic factors (e.g., network delays

or how data will change on a client in between rounds). In light of

this, the adaptation policy that yields the adaptation action cannot

be a closed-form optimization problem. FLiP policies, therefore,

adopt an expert-driven or fully data-driven approach.

For illustrative purposes, Fig. 2 shows an example of the three

different policies for the client-selector as a function of FL round 𝑟

and the F1
𝑟−1/RT𝑟−1

ratio. More details follow hereafter.

Fixed Rule (FLiP
rule

). The first policy involves making adapta-

tion decisions based on predetermined rules. Rules can imply the

comparison of an 𝑥 𝑗 , 𝑗 = 1 . . . 𝑛 driver with a fixed threshold (for

example, the JSD score exceeding a critical value) or the comparison

between two (or more) drivers, e.g., the global F1 score showing a

decreasing trend over the last two rounds.

The selected rule sets for the three patterns are as follows:

T 𝑟
𝑖 =


F1

𝑟−1 > F1
𝑟−2 ∧ F1

𝑟−1

RT𝑟−1
>

F1min

RTmin

(client-selector)

𝐽𝑆𝐷𝑟
𝑖
> JSDmax (het.-data-handler)

RT𝑟−1 > RTmax (message-compressor)

(1)

Note that only the heterogeneous-data-handler rule involves a
client-specific driver since it is the only pattern out of the three

whose adaptation action may vary from client to client.

Figure 2a shows an example of the output of the function 𝑡

with a fixed policy for client-selector with F1min/RTmin = 0.005

(approximately an accuracy of 0.4 in 65s). As per Eq.1, the pattern

is deactivated whenever F1
𝑟−1/RT𝑟−1

is below the set threshold.

Although it is the most computationally lightweight among the

three alternatives, its main drawback lies in the presence of one

or more hyperparameters (depending on the rule set formulation)

whose fine-tuning is entirely expert-dependent.

Predictor-based (FLiP
pred

). The second policy adopts a data-

driven approach by training a ML predictor for metric 𝑦. For all

rounds 𝑟 and clients 𝑖 , given the current state of the system (i.e., vec-

tor 𝑥), the predictor provides two estimations of the target metric 𝑦:

one under the hypothesis that the pattern will be activated (𝑦 |T 𝑟
𝑖
)

and one for the opposite case (𝑦 |¬T 𝑟
𝑖
). To this end, the pairs ⟨𝑥,𝑦⟩

in the training dataset must cover both situations in which the

pattern at hand was on or off to properly inform the predictor.

Function 𝑡 is thus formulated as follows:

T 𝑟
𝑖 =

{
𝑦 |T 𝑟

𝑖
> 𝑦 |¬T 𝑟

𝑖
(client-sel., het.-data-handler)

𝑦 |T 𝑟
𝑖

< 𝑦 |¬T 𝑟
𝑖

(message-compressor)

(2)

With the client-selector and heterogeneous-data-handler, the
higher the target metric the better, meaning the pattern is only

activated when the predictor yields a higher estimate for that case;

vice versa for the message-compressor.
Figure 2b visualizes an example of a predictor-based decision

policy. A decision tree regressor is trained with ⟨𝑥,𝑦⟩ pairs where 𝑦
is the ratio between the global F1 score and the cumulative duration

of the round. Fig. 2b shows the regions where activating the pattern

is estimated to be beneficial (𝑦 |T 𝑟 > 𝑦 |¬T 𝑟
holds) and vice versa.

Like all data-driven approaches, this policy implies the cost of

collecting a sufficiently representative training dataset to train

an accurate predictor. In addition, in underrepresented regions of

the design or performance space, there remains a risk of reduced

accuracy, which can hinder the effectiveness of the policy.

Bayesian Optimization-based (FLiP
bo
). The third policy also

adopts a data-driven approach by framing the per-round decision

making process as a Bayesian Optimization (BO) problem [14].

Instead of directly comparing 𝑦 |T 𝑟
and 𝑦 |¬T 𝑟

as in FLiP
pred

, this

policy envisages an objective function that optimizes an estimate

𝑦 based on 𝑥 . To this end, a Gaussian Process Regressor (GPR)—a

non-parametric Bayesian model—is trained to predict 𝑦 [37]. The

key advantage of the GPR is that it provides not only a point-wise

estimate of the target metric, but also an estimate of the uncertainty

of the output. The BO problem then uses an acquisition function

(i.e., Expected Improvement) that leverages the GPR’s point-wise 𝑦,

Adaptive Toggling of Architectural Patterns for Federated Learning SEAMS ’26, April 13–14, 2026, Rio de Janeiro, Brazil

1
3

5
7

9
11

13
15

17
19

FL Round

0.0001

0.0010
0.0019

0.0028
0.0037

0.0046
0.0055

0.0064
0.0073

0.0082
0.0091

0.0100

Prev
iou

s F
1/T

im
e

0

1

F1
/T

im
e

Th
re

sh
ol

d
S

ta
te

 (1
 >

=
0.

00
5,

 0
 <

 0
.0

05
)

(a) Fixed policy (FLiPrule).

1
3

5
7

9
11

13
15

17
19

FL Round

0.0001

0.0010
0.0019

0.0028
0.0037

0.0046
0.0055

0.0064
0.0073

0.0082
0.0091

0.0100

Prev
iou

s F
1/T

im
e

0

1

S
el

ec
to

r T
og

gl
e

S
ta

te
 (1

=O
N

, 0
=O

FF
)

(b) Predictor-based policy (FLiPpred).

1
3

5
7

9
11

13
15

17
19

FL Round

0.0001

0.0010
0.0019

0.0028
0.0037

0.0046
0.0055

0.0064
0.0073

0.0082
0.0091

0.0100

Prev
iou

s F
1/T

im
e

0

1

P
at

te
rn

 T
og

gl
e

S
ta

te

(c) BayesianOpt-based policy (FLiPbo).

Figure 2: Policy examples on the client-selector. The 𝑧-axis shows 𝑡 ’s output as a function of the current round’s index and the
previous round’s performance.

and uncertainty estimates to explore the search space and identify

the action (i.e., activating the pattern or not) that optimizes 𝑦.

Figure 2c shows a policy for the client-selector where T 𝑟
is the

outcome of the BO optimization problem. Compared to other poli-

cies, the semantic space under consideration is more constrained,

showing the impact of introducing an optimization process.

In summary, depending on the selected policy, FLiP may incur a

computational overhead not only online (i.e., while the FL process

is running) but also offline to train reliable predictors for metric

𝑦. We empirically compare the three policies and the (offline and

online) costs they imply through experimental validation.

4 Experimental Validation
Our experimentation addresses the following research questions:

RQ1. How effective is FLiP?
We quantify the benefit of adopting FLiP and inform soft-

ware engineers of the improvement they can envisage when

deploying it for their applications.

RQ2. What is the offline computational overhead of FLiP?
We investigate the offline cost of FLiP to inform software

engineers of the initial computational efforts expected.

RQ3. What is the online computational overhead of FLiP?
We investigate the online cost of FLiP to advise software

engineers about the latencies caused by adaptation.

4.1 Design of the Evaluation
4.1.1 Evaluation Subjects. The experimental evaluation involves

two ML tasks each running for 20 FL rounds. The former is a

text classification task, where we employ a feed-forward Multi-

Layer Perceptron (MLP) trained on the AG_NEWS dataset
1
, which

contains 120 000 training and 7 600 test news articles labeled by

topical categories (e.g., World, Sports, Business). The latter is an

image classification task, where we use a Convolutional Neural Net-

work (CNN) trained on the CIFAR-10 dataset
2
, comprising 50 000

1
https://huggingface.co/datasets/sh0416/ag_news

2
https://www.cs.toronto.edu/~kriz/cifar.html

Table 2: Evaluation subjects features.

Feature Value

Model under training {MLP, CNN}

Training dataset {AG_NEWS, CIFAR-10}

FL rounds 20

Memory limit per client 4GB

CPUs per low-spec client 1

CPUs per high-spec client 2

N. High-spec clients (Nhigh) {2, 3, 4, 5, 8, 10}
N. Low-spec clients (Nlow) {2, 3, 4, 5, 8, 10}
Data distribution type {IID, non-IID}
Client data inflow {one-shot, batched}
Network condition {stable, unstable}

training and 10 000 test color images of size 32×32 pixels, distributed

across animals and object (e.g., airplane, bird, cat).

For the heterogeneous-data-handler, the data augmentation tech-

nique depends on the nature of the data. For images, we utilize a

Deep Convolutional GAN [31], which comprises a generator and

a discriminator. For textual data (e.g., AG_NEWS), we implement

a Sequence-Generation GAN [39] utilizing an LSTM generator to

convert a latent vector into a sequence of discrete text tokens.

The experiments feature 80 evaluation subjects for each ML task.

Table 2 summarizes the variation that we consider for the feder-

ation topology and how data are distributed across clients. Each

federation has Nhigh high-spec clients with 2 CPUs and Nlow low-

spec clients with 1 CPU. The selected setups span from a minimum

of 6 clients (intended as Nhigh +Nlow) to a maximum of 20. Subjects

also differ according to whether clients have IID data.

The experimental setup additionally explores varying opera-

tional conditions, specifically different client data inflow models

and diverse network conditions. In the first case, local data are ei-

ther fully accessible to clients at round 1 (one-shot data inflow) or a

new batch is added at each round (batched data inflow). The dynam-

ics behind clients gathering new data depend on a wide spectrum of

uncontrollable factors; given the infeasibility of a universal model,

we account for this stochasticity by randomizing the size of the new

data batch. Concerning the network, we consider setups with stable

https://huggingface.co/datasets/sh0416/ag_news
https://www.cs.toronto.edu/~kriz/cifar.html

SEAMS ’26, April 13–14, 2026, Rio de Janeiro, Brazil Baresi et al.

Table 3: Setup for RQ1.

Architectural Pattern Data distribution Data inflow Network

client-selector IID, non-IID {one-shot, batched} {stable}

heterogeneous-data-handler non-IID {one-shot, batched} {stable}

message-compressor IID, non-IID {one-shot} {stable, unstable}

or unstable network conditions, i.e., injecting (randomly for the

unstable case) delays mimicking network congestion problems [7].

4.1.2 Evaluation Methods. We compare three different policies

for FLiP (i.e., FLiP
rule

, FLiP
pred

, and FLiP
bo
), each applied to three

architectural patterns (i.e., client-selector, the heterogeneous-data-
handler, and the message-compressor).

Each policy is compared with three baselines, for a total of 6

methods. For each pattern, the three baselines are: (1) the pattern

is never active (never); (2) the pattern is randomly switched on

(random); (3) the state of the art in evaluating the specific FL pat-

tern [9]. Through baseline (1), the evaluation determines when

it is preferable not to activate the pattern at all. Baseline (2) is a

necessary neutral reference point to assess the usefulness of FLiP

compared to a purely random choice. Baseline (3) is: (i) for the

message-compressor, applyingmodel compression always (always);
(ii) for the heterogeneous-data-handler, i.e., it applies data augmen-

tation every time the local dataset changes. For the batched data

inflow, this amounts to activating the heterogeneous-data-handler
in all rounds for all nodes (always), while with the one-shot data

inflow, it is activated only for the first round (once).
For the client-selector, baseline (3) is a system with Nhigh +Nlow

high-spec clients (all-high), adopting the method used in [9]. A

simpler baseline where the selection criterion always excludes all

low-spec clients does not constitute a fair comparison, as it would

result in FLiP running with Nhigh + Nlow clients being compared

against a baseline with only Nhigh clients. Our chosen baseline

determines how dynamically bringing in some low-spec clients

with FLiP compares to having all high-spec clients always active.

4.1.3 Statistical Tests. Given the stochasticity of the FL process,

we prevent obtaining favorable results by chance by replicating the

application of each method to each evaluation subject 10 times.

When comparing FLiP’s performance to the baselines, we follow

the guideline introduced by Arcuri and Briand [1]. We apply the

Mann-Whitney U test to assess statistical significance and Vargha-

Delaney’s measure to compute the effect size of the difference

between samples [35]. We employ the following standard classifi-

cation for the effect size: small, medium, or large, defined as values

greater than 0.55, 0.63, and 0.70, respectively.

4.1.4 Evaluation Testbed. All experiments are performed on a com-

modity machine running Ubuntu 24.04, equipped with 48 CPUs, 64

GB of memory, and a base clock speed of 2.20 GHz. FLiP is built

upon the Flower framework
3
for FL simulation.

4.2 Results
4.2.1 RQ1: Effectiveness.

3
https://flower.ai

Setup. Experiments aim to explore the configuration space of

evaluation subjects described in Table 2. Table 3 summarizes the

experimental setup of each pattern. The data rebalancing performed

with the heterogeneous-data-handler is only relevant with non-IID

clients; in the other two cases, experiments are replicated with IID

and non-IID clients to evaluate how this impacts FLiP’s effective-

ness. The state of the network only affects themessage-compressor,
which is the only pattern evaluated under stable and unstable con-

ditions (i.e., with stochastic network delays). Similarly, the data

inflow model has no impact on the message-compressor, whereas
the other two patterns are evaluated with both the one-shot and

batched inflow models. All patterns are then evaluated on the same

8 (Nhigh,Nlow) pairs differing in size of the federation (Nhigh+Nlow)

and Nhigh : Nlow ratio, for a total of 8 × 2 × 2 = 32 subjects each for

the client-selector andmessage-compressor, and 8 × 2 = 16 subjects

for the heterogeneous-data-handler. As per Section 4.1.3, the appli-

cation of each of the 6 methods under comparison (the 3 policies

of FLiP and the baselines) to each evaluation subject is replicated

10 times, for a total of 32 × 6 × 10 = 1920 FL runs for the client-
selector and message-compressor, and 16 × 6 × 10 = 960 FL runs

for the heterogeneous-data-handler.
Building on prior works [9, 27], we expect that patterns favor

different performance metrics: client-selector is expected to favor

the accuracy-to-training time ratio; heterogeneous-data-handler
is expected to favor accuracy; message-compressor is expected to

favor client-server communication times. The effectiveness of FLiP

compared to the baselines is then evaluated based on metric 𝑦𝑖 (𝑗)
whose expression varies depending on the pattern (𝑖 ∈ {1, 2, 3}):

𝑦1 (𝑗) =
F1

𝑗∑𝑗

𝑟=1
RT𝑟

, 𝑦2 (𝑗) =
𝑗∑︁

𝑟=1

F1
𝑟 , 𝑦3 (𝑗) =

𝑗∑︁
𝑟=1

(
|𝐶 |∑︁
𝑖=1

CT𝑟𝑖) (3)

Specifically, for the client-selector, 𝑦1 (𝑅) represents the ratio be-

tween the final model’s accuracy over the cumulative time to train

it over 𝑅 rounds; for the heterogeneous-data-handler, 𝑦2 (𝑅) cor-
responds to the cumulative model’s accuracy; for the message-
compressor, 𝑦3 (𝑅) corresponds to the cumulative communication

time. As per Section 4.1.3, we compute the statistical significance of

the difference between 𝑦𝑖 obtained through FLiP with that obtained

through a baseline with the Mann-Whitney U test, and the effect

size with Vargha-Delaney’s measure.

Results. For the client-selector, 𝑦1 distributions are shown in Fig.

3 and Fig. 4, while Table 4 report the statistical tests results.

The results show that, on the client-selector and with the text

classification’s task, FLiP’s effectiveness is more significant when

data is ingested in batches. With image classification, instead, FLiP

is more effective with IID clients than in non-IID conditions, and

with a one-shot rather than batched data inflow. In general, FLiP
pred

is the best-performing policy for both learning tasks. In all cases, at

least one policy performs statistically better than never and random
and is at least statistically equivalent to all-high. We recall that all-
high employs Nhigh + Nlow high-spec clients for all rounds, while

FLiP works with Nhigh high-spec clients active at all rounds and

Nlow low-spec clients that are adaptively activated. Therefore, a

FLiP policy being statistically equivalent to all-high means that it

achieves comparable performance with fewer resources, showing a

comparative advantage of adaptation.

https://flower.ai

Adaptive Toggling of Architectural Patterns for Federated Learning SEAMS ’26, April 13–14, 2026, Rio de Janeiro, Brazil

never random all-high FliPrule FliPpred FliPbo

2.5

3.0

3.5

×10−3

(a) IID, one-shot

never random all-high FliPrule FliPpred FliPbo

1.6

1.7

1.8

1.9

×10−3

(b) IID, batched

never random all-high FliPrule FliPpred FliPbo

1.8

2.0

2.2

2.4

2.6

×10−3

(c) non-IID, one-shot

never random all-high FliPrule FliPpred FliPbo

1.1

1.2

×10−3

(d) non-IID, batched

Figure 3: 𝑦1 (𝑅) on text classification (the higher the better).

never random all-high FliPrule FliPpred FliPbo

2

3

4

5

×10−4

(a) IID, one-shot

never random all-high FliPrule FliPpred FliPbo

3.5

4.0

4.5

×10−4

(b) IID, batched

never random all-high FliPrule FliPpred FliPbo

2

3

4

×10−4

(c) non-IID, one-shot

never random all-high FliPrule FliPpred FliPbo

1.00

1.25

1.50

1.75

2.00

×10−4

(d) non-IID, batched

Figure 4: 𝑦1 (𝑅) on image classification (the higher the better).

Figures 5 and 6 show the mean percentage change in metric

𝑦1 with respect to the always baseline for each round, calculated

for the three policies of FLiP and the all-high baseline. Specifically,

referring to the baseline 𝑦1 (𝑟) value as 𝑦1 (𝑟), the mean percentage

change is calculated as the average of (𝑦1 (𝑟) −𝑦1 (𝑟))/𝑦1 (𝑟) ·100 for

all the collected data points. This zoomed-in analysis shows that,

with the one-shot data inflow, the impact of adaptation is already

noticeable at the beginning of the FL process. Instead, with batched

data, dynamically toggling the client-selector can be detrimental to

performance in the early rounds and progressively increases until

it becomes equivalent to the baseline in the final rounds. The expla-

nation for this phenomenon is that, as data availability decreases

(as in the initial rounds), it becomes more critical to exclude clients

by dynamically toggling client-selector; as the volume of training

data stabilizes, the benefits of adaptation become more evident.

For the heterogeneous-data-handler, the distribution of 𝑦2 for

all methods is shown in Fig. 7 and Fig. 8 and the results of the

statistical tests are reported in Table 5.

The results show that FLiP does not perform statistically better

than random and once with the one-shot inflow. This confirms the

intuition that, if local datasets are stationary throughout the FL

process, applying the heterogeneous-data-handler again after the

first round does not have a beneficial impact on performance.

FliPrule FliPpred FliPbo

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4

2

0

(a) IID, one-shot

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20

10

0

(b) IID, batched

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

0

1

(c) non-IID, one-shot

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20

10

0

10

20

(d) non-IID, batched

Figure 5: Average 𝑦1 per-round percentage change w.r.t. to
baseline all-high on text classification (the higher the better).

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

10

20

30

(a) IID, one-shot

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

60

40

20

0

(b) IID, batched

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

0

10

20

30

(c) non-IID, one-shot

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

40

20

0

(d) non-IID, batched

Figure 6: Average 𝑦1 per-round percentage change on image
classification (the higher the better).

never random once FliPrule FliPpred FliPbo

1.10

1.12

1.14

×101

(a) non-IID, one-shot

never random always FliPrule FliPpred FliPbo

0.80

0.85

0.90

0.95

1.00
×101

(b) non-IID, batched

Figure 7: 𝑦2 (𝑅) on text classification (the higher the better).

never random once FliPrule FliPpred FliPbo

7.0

7.5

8.0

8.5

(a) non-IID, one-shot

never random always FliPrule FliPpred FliPbo

5.0

5.5

6.0

(b) non-IID, batched

Figure 8: 𝑦2 (𝑅) on image classification (the higher the better).

On the other hand, with the batched data inflow, all FLiP policies

perform statistically better than all baselines, with FLiP
pred

and

FLiP
bo

showing the best performance in terms of cumulative F1-

score on text and image classification, respectively. This shows

that re-balancing data multiple times but under selected conditions

SEAMS ’26, April 13–14, 2026, Rio de Janeiro, Brazil Baresi et al.

Table 4: Statistical tests results on𝑦1 (𝑅) (L=Large, M=Medium,
S=Small, N=Negligible effect size). For each pair, the first row
reports IID results and the second reports non-IID results.
Cases where FLiP performs better or worse than a baseline
are reported in bold and grey, respectively.

Text Classification
one-shot batched

never random all-high never random all-high

FLiP
rule

<0.05 (L) <0.05 (M) <0.05 (L) <0.05 (L) <0.05 (L) <0.05 (L)
<0.05 (L) <0.05 (M) <0.05 (S) <0.05 (L) <0.05 (L) <0.05 (L)

FLiP
pred

0.45 (N) 0.06 (S) <0.05 (L) <0.05 (L) <0.05 (L) <0.05 (L)
<0.05 (L) <0.05 (L) <0.05 (S) <0.05 (L) <0.05 (L) <0.05 (L)

FLiP
bo

<0.05 (L) <0.05 (L) 0.62 (N) <0.05 (L) <0.05 (M) 0.08 (S)

<0.05 (L) <0.05 (L) 0.24 (N) <0.05 (M) <0.05 (L) <0.05 (S)

Image Classification
one-shot batched

never random all-high never random all-high

FLiP
rule

<0.05 (M) <0.05 (M) 0.08 (S) <0.05 (M) 0.68 (N) <0.05 (S)

<0.05 (S) 0.35 (N) 0.39 (N) 0.24 (N) 0.61 (N) 0.06 (S)

FLiP
pred

<0.05 (L) <0.05 (L) <0.05 (M) <0.05 (L) <0.05 (S) 0.30 (N)

<0.05 (L) <0.05 (M) <0.05 (M) <0.05 (M) <0.05 (S) 0.22 (N)

FLiP
bo

<0.05 (L) <0.05 (L) <0.05 (L) <0.05 (L) 0.06 (S) 0.91 (N)

<0.05 (L) <0.05 (M) <0.05 (L) <0.05 (S) 0.68 (N) 0.18 (N)

FliPrule FliPpred FliPbo

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3

2

1

0

(a) non-IID, one-shot

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

5

(b) non-IID, batched

Figure 9: Average 𝑦2 per-round percentage change on text
classification (the higher the better).

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10

5

0

(a) non-IID, one-shot

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10

0

(b) non-IID, batched

Figure 10: Average 𝑦2 per-round percentage change on image
classification (the higher the better).

(i.e., depending on the node’s JSD score) results in a statistically

higher F1 score than doing it randomly (random) or for all nodes at

all rounds (always). However, it is worth to remark that balancing

data implies a cost in terms of time overhead quantified in RQ3.

Interestingly, the effectiveness of the heterogeneous-data-
handler is driven more by the data inflow model than by the learn-

ing task. Despite the different data modalities and augmentation

techniques, both tasks mostly benefit from adaptation when data

evolves over time, showing how architectural adaptation responds

to system dynamics and task-specific characteristics.

These results are further supported by the analysis of the per-

centage change reported in Fig. 9 and Fig. 10. As discussed, with

stationary data, the improvement remains marginal until the end

Table 5: Statistical tests results on 𝑦2 (𝑅).

Text Classification
one-shot batched

never random once never random always

FLiP
rule

<0.05 (L) <0.05 (L) <0.05 (S) <0.05 (L) <0.05 (L) <0.05 (L)
FLiP

pred
<0.05 (L) 0.08 (S) <0.05 (L) <0.05 (L) <0.05 (L) <0.05 (L)

FLiP
bo

<0.05 (L) 0.06 (S) <0.05 (L) <0.05 (L) <0.05 (L) <0.05 (L)

Image Classification
one-shot batched

never random once never random always

FLiP
rule

<0.05 (L) 0.43 (N) 0.08 (S) <0.05 (L) <0.05 (L) <0.05 (L)
FLiP

pred
<0.05 (L) 0.22 (S) 0.50 (N) <0.05 (L) <0.05 (L) <0.05 (L)

FLiP
bo

<0.05 (L) 0.17 (S) 0.42 (N) <0.05 (L) <0.05 (L) <0.05 (L)

never random always FliPrule FliPpred FliPbo

4

6

8

×102

(a) IID, stable

never random always FliPrule FliPpred FliPbo

1.0

1.5

2.0

×103

(b) IID, unstable

never random always FliPrule FliPpred FliPbo

4

6

×102

(c) non-IID, stable

never random always FliPrule FliPpred FliPbo

1.0

1.5

2.0
×103

(d) non-IID, unstable

Figure 11: 𝑦3 (𝑅) on text classification (the lower the better).

never random always FliPrule FliPpred FliPbo

3

4

5

6

7
×103

(a) IID, stable

never random always FliPrule FliPpred FliPbo

0.6

0.8

1.0

1.2

×104

(b) IID, unstable

never random always FliPrule FliPpred FliPbo

3

4

5

6

7

×103

(c) non-IID, stable

never random always FliPrule FliPpred FliPbo

0.5

1.0

×104

(d) non-IID, unstable

Figure 12: 𝑦3 (𝑅) on image classification (the lower the better).

of the FL process. With batched data, instead, the improvement

induced by all FLiP’s policies emerges early on in the FL process.

For the message-compressor, 𝑦3 (𝑅) distributions are shown in

Fig. 11 and Fig. 12, while Fig. 13 and Fig. 14 report the per-round

percentage change. The limited size of the model under training

also limits the impact that compression has on communication time:

indeed, the three baselines (including the one keeping compression

constantly active) and FLiP
pred

are equivalent.

For image classification, FLiP
bo

consistently leads to a 10 − 15%

average decrease of communication time both in stable and

Adaptive Toggling of Architectural Patterns for Federated Learning SEAMS ’26, April 13–14, 2026, Rio de Janeiro, Brazil

FliPrule FliPpred FliPbo

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5

0

5

10

(a) IID, stable

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2

0

2

4

6

(b) IID, unstable

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0

2.5

5.0

7.5

10.0

(c) non-IID, stable

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

2

4

6

(d) non-IID, unstable

Figure 13: Average 𝑦3 per-round percentage change on text
classification (the lower the better).

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
15

10

5

0

(a) IID, stable

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

5

0

5

10

(b) IID, unstable

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
15

10

5

0

(c) non-IID, stable

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10

5

0

5

10

(d) non-IID, unstable

Figure 14: Average 𝑦3 per-round percentage change on image
classification (the lower the better).

unstable network conditions (Fig. 14). Nevertheless, statistical

test results (not reported for the sake of conciseness) do not

reveal a significant difference between 𝑦3 distributions (Fig. 12).

In summary, experiments highlight a favorable average trend,

but with an excessive variance that prevents a clear separation

between the distributions.

RQ1 Summary. Adaptive toggling yields a statistically sig-

nificant 5-10% performance improvement with stationary data

for the client-selector and, dually, with variable data for the

heterogeneous-data-handler. With the message-compressor,
we observe a 10-15% improvement in average, although without

statistical evidence related to the adaptation process.

4.2.2 RQ2: Offline Overhead.

Setup. The predictor-based (FLiP
pred

) and BO-based (FLiP
bo
)

policies rely on a predictor trained offline to make decisions at

runtime. This research question aims to estimate the volume of

training data (i.e., ⟨𝑥,𝑦⟩ pairs) required to obtain accurate predictors
and the time required to collect such data.

For each learning tasks, baseline methods are replicated 10 times

on the 80 evaluation subjects, for a total of 2400 FL runs. As per Table

2, each FL run has a budget of 20 rounds, resulting in 19, 200 ⟨𝑥,𝑦⟩
training samples for the client-selector and message-compressor,

Decision Tree Linear Regression Random Forest Gradient Boosting Gaussian Process

100 500 1000 1499 2000
Training Size

0.00

0.05

0.10

PR
M

SE

(a) Selector, PRMSE.

100 500 1000 1499 2000
Training Size

0.875

0.900

0.925

0.950

R-
sq

ua
re

d

(b) Selector, 𝑟 2.

100 500 1000 1500 2000
Training Size

0.00

0.02

0.04

P
R

M
S

E

(c) HDH, PRMSE.

100 500 1000 1500 2000
Training Size

0.97

0.98

0.99

R
-s

qu
ar

ed

(d) HDH, 𝑟 2.

100 500 1000 1500 2000
Training Size

0.00

0.05

0.10

0.15

0.20

P
R

M
S

E

(e) Compressor, PRMSE.

100 500 1000 1500 2000
Training Size

0.4

0.5

0.6

0.7

0.8

R
-s

qu
ar

ed

(f) Compressor, 𝑟 2.

Figure 15: RQ2 results for text classification.

100 500 1000 1500 2000
Training Size

0.00

0.05

0.10

0.15

0.20

P
R

M
S

E

(a) Selector, PRMSE.

100 500 1000 1500 2000
Training Size

0.4

0.5

0.6

0.7

0.8

R
-s

qu
ar

ed

(b) Selector, 𝑟 2.

100 500 1000 1500 2000
Training Size

0.00

0.02

0.04

0.06

0.08

P
R

M
S

E

(c) HDH, PRMSE.

100 500 1000 1500 2000
Training Size

0.94

0.95

0.96

0.97

R
-s

qu
ar

ed

(d) HDH, 𝑟 2.

100 500 1000 1500 2000
Training Size

0.00

0.05

0.10

0.15

P
R

M
S

E

(e) Compressor, PRMSE.

100 500 1000 1500 2000
Training Size

0.7

0.8

0.9

R
-s

qu
ar

ed

(f) Compressor, 𝑟 2.

Figure 16: RQ2 results for image classification.

and 9, 600 for the heterogeneous-data-handler. These data points
are collected by applying baseline methods and are, thus, free of

any bias that might derive from the application of any FLiP policy.

For each pattern and learning task, we compare five models (De-

cision Tree, Linear Regression, Random Forest, Gradient Boosting

[22], and GPR) with increasing training data. The comparison is

based on the Percentage Root Mean Square Error (PRMSE) (the

lower the better) and 𝑟2
score (the higher the better).

As shown in Fig. 15 and Fig. 16, all regressors perform well in

estimating the performance metric selected for all patterns and

SEAMS ’26, April 13–14, 2026, Rio de Janeiro, Brazil Baresi et al.

client-selector heterogenous-data-handler message-compressor
0

50

100

150

Ti
m

e
[s

]

Metric (BL=Baselines)
BL Total Time
FLiP Total Time
BL HDH Time
FLiP HDH Time

(a) Text classification.

client-selector heterogenous-data-handler message-compressor
0

200

400

Ti
m

e
[s

]

Metric (BL=Baselines)
BL Total Time
FLiP Total Time
BL HDH Time
FLiP HDH Time

(b) Image classification.

Figure 17: RQ3 results. For heterogeneous-data-handler, we
report the time overhead for generating synthetic data sepa-
rately from the training time.

both learning tasks. With the client-selector and heterogeneous-
data-handler, 100 samples (16min for text or 2.5h of computation

for images) result in an 𝑟2
score greater than 0.92. With the

message-compressor and 1000 samples (2.8h for text or 4.3h of

computation for images), all models but the linear regressor have

accuracy greater than 0.8. Similarly, PRMSE approximately equals

14% in the worst case. RQ1 experiments adopt a Gradient boosting

regressor for text classification and a Decision Tree regressor

trained with 2000 samples for image classification. The latter, for

the image classification task, for a negligible accuracy cost, is

superior to its alternatives in terms of interpretability [30].

RQ2 Summary. FLiP shows the following offline overhead:

at most 2.5h of data collection to achieve accuracy ≥ 92% for

client-selector and heterogeneous-data-handler, and at most

4.3h for the message-compressor.

4.2.3 RQ3: Online Overhead.

Setup. This RQ accounts for the costs sustained at runtime during

the FL process. We aim to quantify the computational time required

for the adaptation process to run FLiP. To this end, we compare

the duration of FL rounds in all experiments performed for RQ2

between FLiP and all baseline methods for the three patterns. For

the heterogeneous-data-handler, we also compare the additional

overhead necessary to re-balance the data.

Results. For the text classification task and client-selector, as
per Fig. 17a, FLiP adds no computational overhead and yields a

significant performance boost, indicating that adaptation is ben-

eficial. In contrast, with message-compressor, adaptation incurs

significant computation overhead without reducing communica-

tion time, suggesting it is not cost-effective for simpler tasks. For

image classification (Fig. 17b), using FLiP with client-selector and
message-compressor adds no computational overhead, suggesting

that adaptation is more beneficial for heavier learning tasks.

Concerning the heterogeneous-data-handler, for both learning

tasks, results confirm that performing data augmentation multiple

times leads to a statistically significant increase of the duration of

the FL round (by 50% for text and 27% for images), counterbalanced

by the gain in accuracy discussed in RQ1.

RQ3 Summary. FLiP demonstrates a negligible difference in

time overhead when applied to the client-selector and, for image

classification, to the message-compressor. A task-dependent

27-50% increase in round duration is found for heterogeneous-
data-handler, balanced by an accuracy boost.

4.3 Discussion
We discuss the main findings from the experimental campaign,

along with the threats to validity and limitations [38].

4.3.1 Lessons Learned. The evaluated adaptation policies exhibit

distinct tradeoffs. The expert-driven rule set is a low-overhead base-

line but struggles under non-stationary dynamics (e.g., batched

scenarios) where optimal policies evolve. The predictor-based pol-

icy performs best, particularly with client-selector, indicating that
when pattern effects correlate with observable metrics, predictors

trained on historical data achieve a favorable performance–cost bal-

ance. Bayesian optimization (BO) effectively balances exploration

and exploitation in highly uncertain settings (e.g., heterogeneous-
data-handler with batched data), at the expense of higher compu-

tational cost. Although data collection incurs an upfront cost, it is

a one-time investment amortized over the FL system’s lifetime.

Adaptation effectiveness is task-dependent. Text classification

benefits more from adaptive client selection under evolving data

inflow, whereas image classification is more sensitive to data dis-

tribution stability and model size. These results support adaptive

architectural patterns as task-aware design choices rather than

universally optimal solutions.

Although FLiP does not explicitly model training phases, mode-

like behavior emerges implicitly, as runtime metrics evolve with

model maturity, making different patterns preferable at different

stages of the FL process.

Overhead results highlight the practicality of adaptive toggling.

With heterogeneous-data-handler, whether accuracy gains jus-

tify longer training depends on application priorities (e.g., critical

medical settings). For message-compressor, adaptation benefits are

limited by small model sizes and often dominated by environmental

stochasticity, indicating the need for more context-aware policies.

4.3.2 Threats to Validity.

External Validity. To mitigate external validity threats, we con-

ducted an extensive campaign over 80 evaluation subjects, totaling

4,800 FL runs per ML task, with each experiment repeated 10 times

and analyzed usingMann–Whitney U tests at a 95% confidence level.

FLiP supports analyses across varying federation sizes, FL rounds,

and parameter settings to improve generalizability. Nevertheless,

the evaluation is limited in terms of datasets, model architectures,

and FL patterns; results should therefore be interpreted as evidence

of feasibility rather than universal applicability, with broader eval-

uations left to future work.

Internal Validity. Internal validity threats stem from the choice of

numerical input parameters used to assess performance variations

Adaptive Toggling of Architectural Patterns for Federated Learning SEAMS ’26, April 13–14, 2026, Rio de Janeiro, Brazil

across architectural patterns. We vary data distributions (IID vs.

non-IID) to evaluate heterogeneous data handling while keeping

inputs consistent across experiments to reduce confounding effects.

However, selecting representative parameters remains challeng-

ing [6], and additional configurations require future investigation.

Amethodological limitation of FLiP is that only one architectural

pattern can be toggled at a time. Simultaneous pattern activation

may introduce configuration conflicts (e.g., reduced data diversity

limiting data rebalancing effectiveness), which will be addressed in

future work. Security-oriented patterns (e.g., secure aggregation or

homomorphic encryption) could also be integrated but are driven

by privacy and trust concerns rather than performance trade-offs

and are therefore left for future work.

Construct Validity. Construct validity threats arise from potential

metric misuse. We report standard classification metrics (e.g., F1)

and basic count-based metrics (e.g., total FL round runtime 𝑅𝑇𝑟),

minimizing ambiguity.

5 Related Work
This section surveys related work on architectural solutions and

self-adaptation approaches in FL systems.

Architectural Solutions for FL. Previous studies analyze the
FL paradigm from a software architecture perspective. Zhang et

al. [42] compare four alternatives for system architectures of FL:

centralized, hierarchical, regional, and decentralized, and analyze

their communication overhead, model evolution speed, and overall

scalability. FLRA [26] is a pattern-oriented reference architecture

for FL systems. They derive an end-to-end blueprint, encompassing

phases such as job creation, model deployment, and monitoring, by

synthesizing both academic research and industrial best practices.

Lo et al. [27] and Di Martino et al. [13] build a catalog of ar-

chitectural patterns tailored to FL, of which the client-selector is
an example. Each pattern maps a specific stage in the FL model

life cycle, providing a straightforward blueprint for practitioners.

However, while their catalog offers important insights, it mainly

serves as a reference for recurring design solutions.

Several studies benchmark FL performance under varying cir-

cumstances. Li et al. [24] provide a foundational survey on FL,

addressing how constraints such as limited on-device resources,

non-IID distributions, and user privacy shape the need for novel

optimization schemes. Lai et al. [21] developed FedScale, a FL bench-

marking suite featuring realistic datasets and a scalable runtime

environment, enabling reproducible FL research. FedScale offers

high-level APIs to implement, deploy, and evaluate FL algorithms

across diverse hardware and software with minimal effort. Previous

work focuses on node selection strategies [15, 28], highlighting

selection principles (e.g., data heterogeneity, hardware constraints),

scheduling challenges, and research directions.

In summary, foundational studies on FL from a software archi-

tecture perspective [26, 27] primarily consist of qualitative analyses

of foundational literature, combined with industrial case studies.

Our work provides empirical evidence on how architectural de-

cisions taken at runtime affect FL performance. The most recent

contribution in this line of research [9] selects, implements, and

quantitatively compares three patterns from Lo’s catalog [27]. Their

results highlight trade-offs among accuracy, latency, and computa-

tional efficiency when statically chosen for an entire FL. Our work

represents a critical step forward, introducing dynamic pattern

activation on a per-round basis.

Self-adaptation in FL. Baresi et al. [4] frame FL as a self-

adaptation problem that, based on a target accuracy for the new

round, estimates the number of epochs considering clients’ resource

limits and accuracy from the previous two rounds. Wang et al. [36]

propose a control algorithm that determines the best trade-off be-

tween local update and global parameter aggregation to minimize

the loss function under a given resource budget. Li et al. [23] pro-

pose a method where the server leverages historical data to predict

the feasible workload for each client. Zhang et al. [43] propose

adaptively adjusting the batch size for each client at every round

to mitigate performance degradation caused by non-IID data. The

work of Ilhan et al. [19] addresses the challenge of down-scaling

the model by incorporating “early exit classifiers” to improve the

cost-effectiveness of training on resource-constrained clients. Singh

et al. [34] develop a FL strategy to address heterogeneous data by

applying adaptive masking on unlabeled data, reducing entropy

and enhancing confidence of the model’s predictions.

While these approaches demonstrate the value of self-adaptation,

they primarily focus on fine-tuning low-level training hyperparam-

eters (e.g., epochs, batch size) or the model structure itself and

not on adaptation at the architectural level. Our work is the first

to bridge this gap by applying self-adaptation principles to the

selection and toggling of architectural patterns, a fundamentally

different and complementary approach to optimizing FL systems.

6 Conclusion
This paper presents FLiP, a novel framework to adaptively toggle ar-

chitectural patterns at the beginning of each FL round. We quantify

the benefits of FLiP through an experimental campaign on text and

image classification tasks, considering both IID and non-IID client

data distributions and different system settings (e.g., federation size,

client data inflow, and system congestion affecting computation

and communication) that emulate realistic FL deployments. Our

findings indicate that FLiP can lead to an improvement in learning

accuracy and introduces negligible computational overhead, both

offline and online, for two of the three selected patterns.

Future work will address the points raised as threats to validity,

along with a possible extension of the set of patterns under analysis,

thus further investigating the pros and cons of dynamically toggling

additional architectural patterns in FL systems.

Data Availability
The replication package is publicly available on Zenodo [2].

Acknowledgments
This work has been partially funded by the PRIN 2022 projects nr.

20228FT78M and P20224K9EK, the PNRR ECS00000041 VITALITY,

and Department of Excellence 2023 - 2027 for GSSI, all funded by

the Italian Ministry of University and Research (MUR).

References
[1] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical

tests to assess randomized algorithms in software engineering. In Intl. Conf. on
Software Engineering. 1–10.

SEAMS ’26, April 13–14, 2026, Rio de Janeiro, Brazil Baresi et al.

[2] Luciano Baresi, Ivan Compagnucci, Livia Lestingi, and Catia Trubiani. 2026.

Open Science Artifact: Adaptive Toggling of Architectural Patterns for Federated

Learning. doi:10.5281/zenodo.17435560

[3] Luciano Baresi, Livia Lestingi, and Iyad Wehbe. 2025. Architecting Federated

Learning Systems: A Requirement-Driven Approach. In Proceedings of the Eu-
ropean Conference on Software Architecture (ECSA) (Lecture Notes in Computer
Science, Vol. 15929). Springer, 224–239.

[4] Luciano Baresi, Giovanni Quattrocchi, and Nicholas Rasi. 2021. Federated ma-

chine learning as a self-adaptive problem. In International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE, 41–47.

[5] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, and

Nicholas D. Lane. 2020. Flower: A Friendly Federated Learning Research Frame-

work. CoRR abs/2007.14390 (2020).

[6] André B Bondi. 2015. Foundations of Software and System Performance Engineering:
Process, Performance Modeling, Requirements, Testing, Scalability, and Practice.

[7] Christopher Briggs, Zhong Fan, and Peter Andras. 2020. Federated Learning with

Hierarchical Clustering of Local Updates to Improve Training on Non-IID Data.

In International Conference on Neural Network. 1–9.
[8] Shunfeng Chu, Jun Li, Jianxin Wang, Zhe Wang, Ming Ding, Yijin Zhang, Yuwen

Qian, and Wen Chen. 2022. Federated learning over wireless channels: Dy-

namic resource allocation and task scheduling. IEEE Transactions on Cognitive
Communications and Networking 8, 4 (2022), 1910–1924.

[9] Ivan Compagnucci, Riccardo Pinciroli, and Catia Trubiani. 2025. Performance

Analysis of Architectural Patterns for Federated Learning Systems. In Interna-
tional Conference on Software Architecture (ICSA). IEEE, 289–300.

[10] Ivan Compagnucci, Riccardo Pinciroli, and Catia Trubiani. 2026. Experimenting

Architectural Patterns in Federated Learning Systems. Journal of Systems and
Software 232 (2026), 112655.

[11] Rustem Dautov and Erik Johannes Husom. 2024. Raft Protocol for Fault Tolerance

and Self-Recovery in Federated Learning. In 2024 IEEE/ACM 19th Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). 110–121.

[12] Peter Deutsch and Jean-Loup Gailly. 1996. ZLIB Compressed Data Format Speci-

fication version 3.3. RFC 1950 (1996), 1–11.

[13] Beniamino Di Martino, Domenico Di Sivo, and Antonio Esposito. 2024. Architec-

tural Patterns for Software Design Problem-Solving in the Implementation of

Federated Learning Structures Within the E-Health Sector. In International Con-
ference on Advanced Information Networking and Applications. Springer, 347–356.

[14] Peter I Frazier. 2018. Bayesian optimization. In Recent advances in optimization
and modeling of contemporary problems. Informs, 255–278.

[15] Lei Fu, Huanle Zhang, Ge Gao, Mi Zhang, and Xin Liu. 2023. Client selection

in federated learning: Principles, challenges, and opportunities. IEEE Internet of
Things Journal 10, 24 (2023), 21811–21819.

[16] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative

Adversarial Nets. In Conference on Neural Information Processing Systems. 2672–
2680.

[17] Chenyu Hu, Mingyue Zhang, Nianyu Li, Jialong Li, Zheng Yang, Muneeb Ul Has-

san, and Kenji Tei. 2025. Adapting Aggregation Rule for Robust Federated

Learning under Dynamic Attacks. In 2025 IEEE/ACM 20th Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). 171–177.

[18] Zhiyao Hu, Dongsheng Li, Ke Yang, Ying Xu, and Baoyun Peng. 2025. Optimizing

Data Distributions Based on Jensen-Shannon Divergence for Federated Learning.

Tsinghua Science and Technology 30, 2 (2025), 670–681.

[19] Fatih Ilhan, Gong Su, and Ling Liu. 2023. Scalefl: Resource-adaptive federated

learning with heterogeneous clients. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 24532–24541.

[20] Peter Kairouz et al. 2021. Advances and Open Problems in Federated Learning.

Foundations and Trends in Machine Learning 14, 1-2 (2021), 1–210.

[21] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha

Madhyastha, and Mosharaf Chowdhury. 2022. FedScale: Benchmarking Model

and System Performance of Federated Learning at Scale. In Proceedings of Machine
Learning Research (PMLR). 11814–11827.

[22] Machine Learning. 1997. Tom Mitchell. McGraw Hill (1997), 31.
[23] Li Li, Moming Duan, Duo Liu, Yu Zhang, Ao Ren, Xianzhang Chen, Yujuan Tan,

and Chengliang Wang. 2021. FedSAE: A novel self-adaptive federated learning

framework in heterogeneous systems. In 2021 International Joint Conference on
Neural Networks (IJCNN). IEEE, 1–10.

[24] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated

learning: Challenges, methods, and future directions. IEEE signal processing
magazine 37, 3 (2020), 50–60.

[25] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2020.

On the Convergence of FedAvg on Non-IID Data. In International Conference on
Learning Representations, (ICLR).

[26] Sin Kit Lo, Qinghua Lu, Hye-Young Paik, and Liming Zhu. 2021. FLRA: A reference

architecture for federated learning systems. In European Conference on Software
Architecture. Springer, 83–98.

[27] Sin Kit Lo, Qinghua Lu, Liming Zhu, Hye-Young Paik, Xiwei Xu, and Chen Wang.

2022. Architectural patterns for the design of federated learning systems. Journal

of Systems and Software 191 (2022), 111357.
[28] Samara Mayhoub and Tareq M. Shami. 2024. A review of client selection methods

in federated learning. 31, 2 (2024), 1129–1152.

[29] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-

works from Decentralized Data. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS), Vol. 54. 1273–1282.

[30] Christoph Molnar. 2020. Interpretable machine learning. Lulu. com.

[31] Avik Pal and Aniket Das. 2021. TorchGAN: A Flexible Framework for GAN

Training and Evaluation. Journal of Open Source Software 6, 66 (2021), 2606.
[32] Mark Richards. 2015. Software Architecture Patterns. Vol. 4.
[33] Elsa Rizk, Stefan Vlaski, and Ali H Sayed. 2020. Dynamic federated learning.

In Proceedings of the International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC). 1–5.

[34] Neha Singh andMainak Adhikari. 2025. SelfFed: Self-adaptive Federated Learning

with Non-IID data on Heterogeneous Edge Devices for Bias Mitigation and

Enhance Training Efficiency. Information Fusion 118 (2025), 102932.

[35] András Vargha and Harold D Delaney. 2000. A critique and improvement of

the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[36] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian

Makaya, TingHe, and Kevin Chan. 2019. Adaptive Federated Learning in Resource

Constrained Edge Computing Systems. IEEE J. Sel. Areas Commun. 37, 6 (2019),
1205–1221.

[37] Christopher Williams and Carl Rasmussen. 1995. Gaussian processes for regres-

sion. Advances in neural information processing systems 8 (1995).
[38] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell,

Anders Wesslén, et al. 2012. Experimentation in Software Engineering. Vol. 236.
[39] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. SeqGAN: Sequence

Generative Adversarial Nets with Policy Gradient. In Conference on Artificial
Intelligence AAAI. 2852–2858.

[40] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. 2021. A

Survey on Federated Learning. Knowledge-Based System 216 (2021), 106775.

[41] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. 2021. A

survey on federated learning. Knowledge-Based Systems 216 (2021), 106775.
[42] Hongyi Zhang, Jan Bosch, and Helena Holmström Olsson. 2020. Federated

learning systems: Architecture alternatives. In Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 385–394.

[43] Jie Zhang, Song Guo, Zhihao Qu, Deze Zeng, Yufeng Zhan, Qifeng Liu, and Ra-

jendra Akerkar. 2021. Adaptive federated learning on non-iid data with resource

constraint. IEEE Trans. Comput. 71, 7 (2021), 1655–1667.
[44] Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and

Lawrence Carin. 2017. Adversarial Feature Matching for Text Generation. In

International Conference on Machine Learning, ICML, Vol. 70. PMLR, 4006–4015.

https://doi.org/10.5281/zenodo.17435560

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Federated Learning in a Nutshell
	2.2 FL Architectural Patterns

	3 The Framework
	3.1 Adaptation Drivers
	3.2 Adaptation Policies

	4 Experimental Validation
	4.1 Design of the Evaluation
	4.2 Results
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

