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Abstract

Federated Learning (FL) is increasingly adopted as an alternative to
centralized Machine Learning (ML) techniques, as it allows clients
to preserve the privacy of their data. However, FL systems pose new
challenges in terms of adaptation, as design choices are conditioned
by client characteristics and network conditions, thus necessitating
adaptive strategies that elaborate on such a different operational
environment. Previous work introduces a set of architectural pat-
terns to support practitioners at design time, but their effectiveness
has only been investigated when statically activated throughout
the FL process. This work presents a novel FL framework, namely
FLiP, where a subset of the aforementioned patterns are dynami-
cally and adaptively toggled in response to evolving performance
metrics and boundary conditions. We empirically evaluate FLiP
across multiple federation configurations and two learning tasks,
considering both static and dynamic conditions. Results indicate
that dynamically toggling architectural patterns can be beneficial
under specific conditions, with cases leading to an improvement of
up to 10% in learning accuracy, at the cost of negligible overhead
at deployment time.
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1 Introduction

Federated Learning (FL) is a distributed machine learning paradigm
that ensures data privacy by allowing multiple decentralized clients
to collaboratively train a global model without sharing raw data [20,
24]. Introduced by Google in 2016 [29], FL shifts computation locally,
where a group of clients trains a Machine Learning (ML) model
and sends only the trained parameters to a central server, which
aggregates them into a global model.

Typically, the architecture of the FL system is configured ex ante,
which means that the parameters and architecture design are de-
fined before system deployment and remain fixed [41]. In contrast,
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dynamic FL [33] moves configurations at runtime to improve the
efficiency of the learning process [8].

A systematic literature review has recently identified the lack
of design approaches and proposed a collection of 14 architectural
patterns, organized into 4 categories, to overcome the problem and
provide commonly reusable design solutions [26]. Their effective-
ness has been evaluated when kept statically active throughout
the FL process [3, 9, 10], but more dynamism would allow max-
imizing various quality metrics. Each pattern entails a trade-off
between different quality metrics [27], which is not fully explored
when they are statically active or inactive throughout the entire
FL process. Consider, for instance, a retail company that trains a
demand forecasting model across geographically distributed stores
and adopts FL to avoid centralizing sensitive sales data. In the
early training phases, involving many clients (e.g., stores) increases
both the volume and diversity of training data, which can improve
model generalization, while excluding slower clients later on can
speed up convergence. Similarly, strategies such as data rebalancing
and communication compression are beneficial only under specific
conditions (e.g., skewed data distribution, congested network), mo-
tivating the adaptive toggling of architectural patterns at runtime.

Inspired by previous work [4, 11, 17], which demonstrated the
benefits of self-adaptive FL systems, this paper proposes to dynam-
ically and adaptively toggle FL architectural patterns at runtime.
The system dynamically adapts architectural design choices —in a
consistent way— to improve the effectiveness of FL. The general
idea is exemplified by selecting three patterns as representative of
different categories, specifically: (i) client-selector, which is a client
management pattern; (ii) heterogeneous-data-handler, which is a
model training pattern; and message-compressor, which is a model
management pattern. We do not consider the fourth group, since it
has a more radical impact on architecture (e.g., hierarchical or de-
centralized aggregation) that cannot be dynamically (de)activated.

This work proposes the adoption of a runtime controller that
adaptively toggles architectural patterns as the FL system evolves.
Treating FL evolution as a primary concern, it uses performance
indicators and boundary conditions to determine at runtime which
architectural solutions are most suitable. The controller is the key
component of FLiP, a novel framework that augments the reference
FL architecture to toggle architectural patterns at the beginning of
each FL round. Unlike previous work with static (de)activation, in
each round, FLiP decides which patterns to switch based on system
performance metrics and boundary conditions. The former provides
quantitative insights on how the FL application is performing and
whether this requires adjustments; the latter represents a proxy for
sources of uncertainty in the environment where the FL application
is deployed. Because each pattern comes with a trade-off in terms
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of metrics it improves or worsens, FLiP digs into this trade-off by
identifying regions of the FL design and performance space where
activating a pattern is preferable to disable it.

FLiP builds on top of Flower [5], a well-consolidated FL frame-
work. The experimental validation of FLiP addresses three research
questions assessing the effectiveness of the framework, its offline
and online computational overhead. The results show that the pro-
posed framework achieves a statistically significant performance
gain of up to 10%. While the evaluation necessarily covers a limited
set of datasets and models, it helps assess the practical benefits
of adaptive architectural pattern toggling. In summary, the main
contributions of this paper are:

o The development of a framework that automates the application
of adaptive strategies to FL systems;

e The exemplification of adaptive strategies for three exemplar
architectural patterns from different categories;

o An empirical assessment of the proposed framework under rep-
resentative FL settings.
In the following, Section 2 outlines the preliminaries, Section 3

describes FLiP, Section 4 reports the experimental results, Section

5 surveys related work and Section 6 concludes the paper.

2 Preliminaries

This section describes the preliminaries that underlie our work.

2.1 Federated Learning in a Nutshell

Federated Learning (FL) enables collaborative training of ML mod-
els on data distributed across different devices (the clients), while
preserving the privacy of the data of each client. Training occurs
through interactions between clients and a server. The process is
iterative and lasts multiple rounds until a predetermined stopping
criterion holds (e.g., a predefined number of rounds has ended).
Initially, (D) a central server broadcasts the global model parameters
(e.g., the model weights) to all participating clients. Upon receiving
these parameters, (2) each client independently and locally trains
the model using its private dataset, without sharing any raw data
with the server. After completion of the local training, (3) each
client returns the updated model parameters to the central server.
The server then (4) aggregates these local updates, typically using
an information fusion algorithm such as FedAvg [29] to (5) update
the global model. Subsequently, (1) the newly aggregated global
model parameters are redistributed to the clients, initiating the next
training round.

2.2 FL Architectural Patterns

Architectural patterns offer reusable solutions for common design
challenges in complex systems [32]. Lo et al. [27] propose a set
of patterns tailored to FL, addressing macro areas such as client
management, model management, and model training, covering
these system dimensions with architectural solutions. In our study,
we select: the client-selector, the heterogeneous-data-handler, and
the message-compressor. The rationale for this choice is to target
different dimensions of FL systems.

Client Selector. The client-selector determines the subset of
clients that will participate in the round that is about to begin.
Selection criteria can be data-, resource-, or performance-driven [7,
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27]. The server profiles each client (e.g., its CPU availability and
data distribution) and applies the selection criteria to include or
exclude clients.

Potential Impact of Adaptive Toggling. The pattern mitigates is-
sues due to limited resources, imbalanced data, and low-quality local
models, enhancing training efficiency and stability. However, hav-
ing the pattern active for all rounds permanently excludes clients,
preventing the system from leveraging additional computational
power (i.e., the clients that would be excluded by the selection
criteria) even when it could be beneficial.

Heterogeneous Data Handler. The goal of the heterogeneous-
data-handler is to mitigate issues due to a client having non-
independent and identically distributed (IID) data, which affects the
accuracy of the model. To this end, the pattern applies either (i) data
augmentation, which generates synthetic data to increase the diver-
sity and size of the local dataset through a Generative Adversarial
Network (GAN) [16, 39, 44], or (ii) federated distillation, which
shares knowledge among clients without accessing raw data [27].
These methods balance data distributions while preserving privacy
and avoiding centralized data collection [40].

Potential Impact of Adaptive Toggling. While improving the global
model accuracy, the heterogeneous-data-handler can cause a surge
in computational time to perform data augmentation.

Message Compressor. The message-compressor aims to re-
duce the communication time overhead by compressing the model
parameters exchanged between the server and clients. The pro-
cess develops in four phases [27]: the server compresses the model
weights and sends them to clients; clients decompress the received
parameters for local training; after training, clients compress their
updated parameters and return them to the server; the server de-
compresses the incoming updates for aggregation.

Potential Impact of Adaptive Toggling. Weight compression can
reduce communication overhead [42]. On the other hand, if the
network over which the client and server communicate is fast,
compression and decompression only cause additional overhead.

3 The FLiP Framework

The result of an FL run depends on several environmental and sys-
tem features, which constitute the semantic space. We refer to the
set of n features in the semantic space as X ¢ R". Table 1 summa-
rizes the features selected for this study. We refer to the set of m
quality metrics selected for the FL system under analysisas Y ¢ R™.
The quality metrics selected for this work are listed in Table 1. For
example, the number of rounds represents a feature of FL, and the
duration of a round r is a quality metric that denotes how long r
lasts. Each architectural pattern entails a trade-off between quality
metrics, e.g., the heterogeneous-data-handler favors accuracy but
comes with a computational cost [27]. The selection of the quality
metrics to measure the performance of an FL run derives from an
analysis of the requirements of the specific application: in some
cases, maximizing the accuracy of the model is the main concern;
in other cases, minimizing the training time is preferable [3, 27].
The novelty of FLiP consists in extending the reference archi-
tecture by introducing adaptive toggle switches (see Fig. 1) for the
selected patterns. When a manager component detects that the cur-
rent configuration of the semantic space is not the most favorable
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Figure 1: Component diagram representing FLiP’s architecture (portions involving different patterns are colored accordingly).

for metrics Y, adaptation is triggered by flipping a pattern switch
(i.e., maintaining a favorable trend for metrics Y is the adaptation
goal). Specifically, we assume that the federation features a set C of
clients in total, while R € N represents the budget for FL rounds. Let
B denote the set {0, 1}. FLiP introduces controllable binary variable
7" € Bwithi=1...|C|and r = 1... R representing whether the
selected pattern is active for client i at round r (7;” = 1) or not
(7,7 = 0). When the value of 7," is set globally for all clients for
round r, we use the simplified notation 7. Note that the framework
currently supports one 7 variable at a time. Therefore, adaptation
involves only one pattern per FL run and the three patterns selected
for this study are analyzed independently of each other.

The reference architecture of Lo et al. for FL [26] features two
subsystems for the server and the client, whose components reflect
the operational workflow described in Section 2.1. Fig. 1 shows the
extended architecture with FLiP introducing the Pattern Toggling
Manager that plays the key role of determining whether the current
architectural setup requires adaptation, i.e., a specific pattern under
evaluation needs to be turned on or off. Adaptation decisions in
FLiP are managed centrally by the Pattern Toggling Manager on
the server side. At the beginning of each FL round, the server com-
municates the current configuration of the architectural patterns
to the clients as part of the round setup. Clients do not perform
adaptation decisions autonomously; instead, they react to the re-
ceived configuration by enabling or disabling the corresponding
pattern-specific components. No additional self-adaptation logic
nor infrastructure is introduced on the client side.

The value of ‘Tl " is the output of a function ¢ : N2 xR" — B,
which the Pattern Toggling Manager embeds. The function ¢ takes
as input the round and client for which a decision must be made (i €
[1,|C]], r € [1,R]) and the vector x C R" of n values representing
the current configuration of the semantic space. Function t embeds
the adaptation policy and X contains everything the server knows
about the global model, the federation, and the environment in
which it is deployed at a specific moment and that can drive the
decision to change the toggle state of the pattern. Let X and %’
be space configurations at the beginning of rounds r — 1 and r,
respectively. When 717"1 = t(i,r — 1, x) differs from 7? t(i,r,x"),
7;"1 — 7.7 is the adaptation action for client i at round r.

Table 1: Semantic space in FLiP’s problem formulation.

Symbol Description eX/eY
ReN Number of rounds eX
RT" e R4 Duration of round r eX, ey
c Available clients eX
Res, Resources on client ¢ eX
Nhigh € N High-specification clients eX
Njow € N Low-specification clients eX
crcce Clients selected for round r eX
DI Data available on client i at round r eX
JSD} € 10,1] JSD score for client i at round r eXx
CT] e Ry Communication Time for client i atroundr € X/e Y
W] € Mmxnxp(R) Weights sent by client i at round r €eX
F1" e Ry Global F1 score at round r eX/eY
T eB Pattern toggle state for client i at round r -

Note that in FLiP, adaptation is managed centrally, which justi-
fies why the manager component is part of the server subsystem.
Therefore, the function ¢ can only reason on values that, according
to the FL paradigm, the server is allowed to know. For example,
adaptation cannot depend on how many samples a client holds for
a specific dataset class since the server is not aware of this.

3.1 Adaptation Drivers

Although the tool implementing FLiP allows for a flexible configu-
ration of the semantic space for a FL run, deciding which drivers
are most suited to each pattern requires additional reasoning. In
the following, we discuss the drivers for the selected patterns.

Client Selector. Out of the alternatives from Section 2.2, in
FLiP, we adopt a resource-based selection criterion [27], as per the
state of the art [9]. Specifically, we select clients according to their
computational power, that is, with a number of CPUs greater than
a predefined threshold. We refer to the subset of clients selected
for round r as C" C C and the amount of resources (e.g., CPUs)
available to client i as Res; € N. With this selection criterion, client
i belongs to set C” if and only if Res; is at least resy, € N.

In this setting, deactivating the client-selector entails involv-
ing the entire federation in the upcoming round rather than fil-
tering out low-specification clients. The function ¢, therefore, is
based on the ratio between the F1 score of the last round and
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its duration (F1"~!/RT"~!) and the number of high- and low-
specification clients available (Npjgh and Njoy, respectively, such
that Npigh + Njow = [C| holds). At a high level, the manager may
decide to deactivate the client-selector if the model performs below
expectations, and adding the low-specification clients back in (thus
employing additional resources) could improve the situation.

Since it affects the entire federation and not a specific client, the
adaptation of client-selector is managed at a global level (i.e., the
selection is on with 77 = 1, and off otherwise).

Heterogeneous Data Handler. FLiP applies data augmentation
to rebalance non-IID data on a client. When the heterogeneous-
data-handler is active for a client, a conditional GAN analyzes the
client’s distribution and creates class-specific samples accordingly
to rebalance the distribution [25]. The pattern thus generates high-
quality synthetic data to populate underrepresented classes.

However, these augmentation strategies entail significant time
overhead even when classes are only slightly unbalanced (which
would thus not affect the accuracy of the global model significantly).
Function ¢ is thus based on F1"~! (if the global model performs
worse than expected, it justifies investing more time to improve
accuracy) and the degree of imbalance of each client. We measure
the deviation of the label distribution of a client from an IID distri-
bution using the Jensen-Shannon Divergence (JSD) metric [18]. Let
D7 be the data available on client i at round r. We refer to client i’s
JSD score for round r as JSD] = JSD(DY) € [0, 1], where JSD] =1
means data distribution is identical to a perfectly balanced one.

In this case, the adaptation is handled client by client (7;" =
implies that data will be rebalanced on client i at round r).

Message Compressor. Let W] be the model weights at the
end of the training on client i at round r. In FLiP, the message-
compressor exploits the LZ77 compression algorithm, known for
its fast compression speeds and low resource usage [12], to com-
press and decompress W/ at every client-server communication
instance. Note that weight compression is bi-directional: if the
message-compressor is active, the server will try to decompress
the weights received from all clients and send compressed weights
to all clients. Therefore, adaptation is managed at a global level and
function t reasons on the duration of the client-server communi-
cation phase for the previous round, indicated by }; lgll CT} “Tto
determine whether activating compression is beneficial.

3.2 Adaptation Policies

This section describes three possible implementations of the ¢ adap-
tation function, i.e., three adaptation policies for the FLiP frame-
work. We recall that, in our formulation, quality metrics Y depend
on observable but partially stochastic factors (e.g., network delays
or how data will change on a client in between rounds). In light of
this, the adaptation policy that yields the adaptation action cannot
be a closed-form optimization problem. FLiP policies, therefore,
adopt an expert-driven or fully data-driven approach.

For illustrative purposes, Fig. 2 shows an example of the three
different policies for the client-selector as a function of FL round r
and the F1"~1/RT"~! ratio. More details follow hereafter.

Fixed Rule (FLiP,.). The first policy involves making adapta-
tion decisions based on predetermined rules. Rules can imply the
comparison of an %j, j = 1...n driver with a fixed threshold (for
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example, the JSD score exceeding a critical value) or the comparison
between two (or more) drivers, e.g., the global F1 score showing a
decreasing trend over the last two rounds.

The selected rule sets for the three patterns are as follows:

F1"1 > F1"' 2 A Ingr,__ll > }I;%—“n‘:i‘r‘] (client-selector)
T = JSD] > JSDmax (het.-data-handler)
RT" 1 > RTpax (message-compressor)
1)

Note that only the heterogeneous-data-handler rule involves a
client-specific driver since it is the only pattern out of the three
whose adaptation action may vary from client to client.

Figure 2a shows an example of the output of the function t
with a fixed policy for client-selector with F1in/RTmin = 0.005
(approximately an accuracy of 0.4 in 65s). As per Eq.1, the pattern
is deactivated whenever F17~1/RT" ! is below the set threshold.

Although it is the most computationally lightweight among the
three alternatives, its main drawback lies in the presence of one
or more hyperparameters (depending on the rule set formulation)
whose fine-tuning is entirely expert-dependent.

Predictor-based (FLiPpeq). The second policy adopts a data-
driven approach by training a ML predictor for metric y. For all
rounds r and clients i, given the current state of the system (i.e., vec-
tor x), the predictor provides two estimations of the target metric y:
one under the hypothesis that the pattern will be activated (§|7;")
and one for the opposite case (§|—7;"). To this end, the pairs (%, y)
in the training dataset must cover both situations in which the
pattern at hand was on or off to properly inform the predictor.

Function ¢ is thus formulated as follows:

. {ﬁ|‘7l'r > g|=7;" (client-sel,, het.-data-handler)

! 417" < §|=7;" (message-compressor) @
With the client-selector and heterogeneous-data-handler, the
higher the target metric the better, meaning the pattern is only
activated when the predictor yields a higher estimate for that case;
vice versa for the message-compressor.

Figure 2b visualizes an example of a predictor-based decision
policy. A decision tree regressor is trained with (X, y) pairs where y
is the ratio between the global F1 score and the cumulative duration
of the round. Fig. 2b shows the regions where activating the pattern
is estimated to be beneficial (§|7" > §|=7 " holds) and vice versa.

Like all data-driven approaches, this policy implies the cost of
collecting a sufficiently representative training dataset to train
an accurate predictor. In addition, in underrepresented regions of
the design or performance space, there remains a risk of reduced
accuracy, which can hinder the effectiveness of the policy.

Bayesian Optimization-based (FLiPy,). The third policy also
adopts a data-driven approach by framing the per-round decision
making process as a Bayesian Optimization (BO) problem [14].
Instead of directly comparing §|7" and §|=7" as in FLiP} g, this
policy envisages an objective function that optimizes an estimate
7 based on x. To this end, a Gaussian Process Regressor (GPR)—a
non-parametric Bayesian model—is trained to predict y [37]. The
key advantage of the GPR is that it provides not only a point-wise
estimate of the target metric, but also an estimate of the uncertainty
of the output. The BO problem then uses an acquisition function
(i.e., Expected Improvement) that leverages the GPR’s point-wise 7,
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(a) Fixed policy (FLiP,ye).

(b) Predictor-based policy (FLiP}.q)-

(c) BayesianOpt-based policy (FLiPy,,).

Figure 2: Policy examples on the client-selector. The z-axis shows t’s output as a function of the current round’s index and the

previous round’s performance.

and uncertainty estimates to explore the search space and identify
the action (i.e., activating the pattern or not) that optimizes y.

Figure 2c shows a policy for the client-selector where 7" is the
outcome of the BO optimization problem. Compared to other poli-
cies, the semantic space under consideration is more constrained,
showing the impact of introducing an optimization process.

In summary, depending on the selected policy, FLiP may incur a
computational overhead not only online (i.e., while the FL process
is running) but also offline to train reliable predictors for metric
7. We empirically compare the three policies and the (offline and
online) costs they imply through experimental validation.

4 Experimental Validation

Our experimentation addresses the following research questions:

RQ1. How effective is FLiP?
We quantify the benefit of adopting FLiP and inform soft-
ware engineers of the improvement they can envisage when
deploying it for their applications.
RQ2. What is the offline computational overhead of FLiP?
We investigate the offline cost of FLiP to inform software
engineers of the initial computational efforts expected.
RQ3. What is the online computational overhead of FLiP?
We investigate the online cost of FLiP to advise software
engineers about the latencies caused by adaptation.

4.1 Design of the Evaluation

4.1.1  Evaluation Subjects. The experimental evaluation involves
two ML tasks each running for 20 FL rounds. The former is a
text classification task, where we employ a feed-forward Multi-
Layer Perceptron (MLP) trained on the AG_NEWS dataset!, which
contains 120 000 training and 7 600 test news articles labeled by
topical categories (e.g., World, Sports, Business). The latter is an
image classification task, where we use a Convolutional Neural Net-
work (CNN) trained on the CIFAR-10 dataset?, comprising 50 000

!https://huggingface.co/datasets/sh0416/ag_news
Zhttps://www.cs.toronto.edu/~kriz/cifar.html

Table 2: Evaluation subjects features.

Feature Value

Model under training {MLP, CNN}
Training dataset {AG_NEWS, CIFAR-10}
FL rounds 20

Memory limit per client 4GB

CPUs per low-spec client 1

CPUs per high-spec client 2

N. High-spec clients (Npigh) {2,3,4,5,8,10}

N. Low-spec clients (Njo,,)  {2,3,4,5,8,10}
Data distribution type {IID, non-1ID}
Client data inflow {one-shot, batched}
Network condition {stable, unstable}

training and 10 000 test color images of size 3232 pixels, distributed
across animals and object (e.g., airplane, bird, cat).

For the heterogeneous-data-handler, the data augmentation tech-
nique depends on the nature of the data. For images, we utilize a
Deep Convolutional GAN [31], which comprises a generator and
a discriminator. For textual data (e.g., AG_NEWS), we implement
a Sequence-Generation GAN [39] utilizing an LSTM generator to
convert a latent vector into a sequence of discrete text tokens.

The experiments feature 80 evaluation subjects for each ML task.
Table 2 summarizes the variation that we consider for the feder-
ation topology and how data are distributed across clients. Each
federation has Np;gh high-spec clients with 2 CPUs and Njqy, low-
spec clients with 1 CPU. The selected setups span from a minimum
of 6 clients (intended as Npjgp, + Njoy) to a maximum of 20. Subjects
also differ according to whether clients have IID data.

The experimental setup additionally explores varying opera-
tional conditions, specifically different client data inflow models
and diverse network conditions. In the first case, local data are ei-
ther fully accessible to clients at round 1 (one-shot data inflow) or a
new batch is added at each round (batched data inflow). The dynam-
ics behind clients gathering new data depend on a wide spectrum of
uncontrollable factors; given the infeasibility of a universal model,
we account for this stochasticity by randomizing the size of the new
data batch. Concerning the network, we consider setups with stable
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Table 3: Setup for RQ1.

Data distribution Data inflow Network

1ID, non-IID {one-shot, batched} {stable}
heterogeneous-data-handler non-IID {one-shot, batched} {stable}
message-compressor 1ID, non-IID {one-shot} {stable, unstable}

Architectural Pattern

client-selector

or unstable network conditions, i.e., injecting (randomly for the
unstable case) delays mimicking network congestion problems [7].

4.1.2  Evaluation Methods. We compare three different policies
for FLiP (i.e., FLiPyyje, FLiPpreq, and FLiPy,), each applied to three
architectural patterns (i.e., client-selector, the heterogeneous-data-
handler, and the message-compressor).

Each policy is compared with three baselines, for a total of 6
methods. For each pattern, the three baselines are: (1) the pattern
is never active (never); (2) the pattern is randomly switched on
(random); (3) the state of the art in evaluating the specific FL pat-
tern [9]. Through baseline (1), the evaluation determines when
it is preferable not to activate the pattern at all. Baseline (2) is a
necessary neutral reference point to assess the usefulness of FLiP
compared to a purely random choice. Baseline (3) is: (i) for the
message-compressor, applying model compression always (always);
(ii) for the heterogeneous-data-handler, i.e., it applies data augmen-
tation every time the local dataset changes. For the batched data
inflow, this amounts to activating the heterogeneous-data-handler
in all rounds for all nodes (always), while with the one-shot data
inflow, it is activated only for the first round (once).

For the client-selector, baseline (3) is a system with Npjgp + Niow
high-spec clients (all-high), adopting the method used in [9]. A
simpler baseline where the selection criterion always excludes all
low-spec clients does not constitute a fair comparison, as it would
result in FLiP running with Npjgh + Njoy clients being compared
against a baseline with only Nygp clients. Our chosen baseline
determines how dynamically bringing in some low-spec clients
with FLiP compares to having all high-spec clients always active.

4.1.3 Statistical Tests. Given the stochasticity of the FL process,
we prevent obtaining favorable results by chance by replicating the
application of each method to each evaluation subject 10 times.

When comparing FLiP’s performance to the baselines, we follow
the guideline introduced by Arcuri and Briand [1]. We apply the
Mann-Whitney U test to assess statistical significance and Vargha-
Delaney’s measure to compute the effect size of the difference
between samples [35]. We employ the following standard classifi-
cation for the effect size: small, medium, or large, defined as values
greater than 0.55, 0.63, and 0.70, respectively.

4.1.4  Evaluation Testbed. All experiments are performed on a com-
modity machine running Ubuntu 24.04, equipped with 48 CPUs, 64
GB of memory, and a base clock speed of 2.20 GHz. FLiP is built
upon the Flower framework? for FL simulation.

4.2 Results
4.2.1 RQI: Effectiveness.

3https://flower.ai
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Setup. Experiments aim to explore the configuration space of
evaluation subjects described in Table 2. Table 3 summarizes the
experimental setup of each pattern. The data rebalancing performed
with the heterogeneous-data-handler is only relevant with non-IID
clients; in the other two cases, experiments are replicated with IID
and non-IID clients to evaluate how this impacts FLiP’s effective-
ness. The state of the network only affects the message-compressor,
which is the only pattern evaluated under stable and unstable con-
ditions (i.e., with stochastic network delays). Similarly, the data
inflow model has no impact on the message-compressor, whereas
the other two patterns are evaluated with both the one-shot and
batched inflow models. All patterns are then evaluated on the same
8 (Nhigh» Niow) pairs differing in size of the federation (Npigh+Njow)
and Nyjgh : Njoy ratio, for a total of 8 X 2 X 2 = 32 subjects each for
the client-selector and message-compressor, and 8 X 2 = 16 subjects
for the heterogeneous-data-handler. As per Section 4.1.3, the appli-
cation of each of the 6 methods under comparison (the 3 policies
of FLiP and the baselines) to each evaluation subject is replicated
10 times, for a total of 32 X 6 X 10 = 1920 FL runs for the client-
selector and message-compressor, and 16 X 6 X 10 = 960 FL runs
for the heterogeneous-data-handler.

Building on prior works [9, 27], we expect that patterns favor
different performance metrics: client-selector is expected to favor
the accuracy-to-training time ratio; heterogeneous-data-handler
is expected to favor accuracy; message-compressor is expected to
favor client-server communication times. The effectiveness of FLiP
compared to the baselines is then evaluated based on metric y; ()
whose expression varies depending on the pattern (i € {1, 2, 3}):

j J i lCl
n() = ()= Y F () =Y. T ()

I RT' = ==
Specifically, for the client-selector, y; (R) represents the ratio be-
tween the final model’s accuracy over the cumulative time to train
it over R rounds; for the heterogeneous-data-handler, y2(R) cor-
responds to the cumulative model’s accuracy; for the message-
compressor, y3(R) corresponds to the cumulative communication
time. As per Section 4.1.3, we compute the statistical significance of
the difference between y; obtained through FLiP with that obtained
through a baseline with the Mann-Whitney U test, and the effect

size with Vargha-Delaney’s measure.

Results. For the client-selector, y; distributions are shown in Fig.
3 and Fig. 4, while Table 4 report the statistical tests results.

The results show that, on the client-selector and with the text
classification’s task, FLiP’s effectiveness is more significant when
data is ingested in batches. With image classification, instead, FLiP
is more effective with IID clients than in non-IID conditions, and
with a one-shot rather than batched data inflow. In general, FLiPpeq
is the best-performing policy for both learning tasks. In all cases, at
least one policy performs statistically better than never and random
and is at least statistically equivalent to all-high. We recall that all-
high employs Npjgp, + Njoy, high-spec clients for all rounds, while
FLiP works with Npjg, high-spec clients active at all rounds and
Njow low-spec clients that are adaptively activated. Therefore, a
FLiP policy being statistically equivalent to all-high means that it
achieves comparable performance with fewer resources, showing a
comparative advantage of adaptation.
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Figure 3: y; (R) on text classification (the higher the better).
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Figure 4: y; (R) on image classification (the higher the better).

Figures 5 and 6 show the mean percentage change in metric
y;1 with respect to the always baseline for each round, calculated
for the three policies of FLiP and the all-high baseline. Specifically,
referring to the baseline y; (r) value as 71 (r), the mean percentage
change is calculated as the average of (y1 (r) —g1(r))/g1(r) - 100 for
all the collected data points. This zoomed-in analysis shows that,
with the one-shot data inflow, the impact of adaptation is already
noticeable at the beginning of the FL process. Instead, with batched
data, dynamically toggling the client-selector can be detrimental to
performance in the early rounds and progressively increases until
it becomes equivalent to the baseline in the final rounds. The expla-
nation for this phenomenon is that, as data availability decreases
(as in the initial rounds), it becomes more critical to exclude clients
by dynamically toggling client-selector; as the volume of training
data stabilizes, the benefits of adaptation become more evident.

For the heterogeneous-data-handler, the distribution of y3 for
all methods is shown in Fig. 7 and Fig. 8 and the results of the
statistical tests are reported in Table 5.

The results show that FLiP does not perform statistically better
than random and once with the one-shot inflow. This confirms the
intuition that, if local datasets are stationary throughout the FL
process, applying the heterogeneous-data-handler again after the
first round does not have a beneficial impact on performance.
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Figure 5: Average y; per-round percentage change w.r.t. to
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classification (the higher the better).
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Figure 8: y2(R) on image classification (the higher the better).

On the other hand, with the batched data inflow, all FLiP policies
perform statistically better than all baselines, with FLiP,eq and
FLiPp, showing the best performance in terms of cumulative F1-
score on text and image classification, respectively. This shows
that re-balancing data multiple times but under selected conditions
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Table 4: Statistical tests results on y; (R) (L=Large, M=Medium,
S=Small, N=Negligible effect size). For each pair, the first row

reports IID results and the second reports non-IID results.

Cases where FLiP performs better or worse than a baseline
are reported in bold and grey, respectively.

Text Classification

one-shot batched
never random all-high never random all-high
FLiP <0.05(L) <0.05(M) <005(L) <0.05(L) <0.05(L) <0.05(L)
Frle  _005(L) <0.05(M) <0.05(S) <0.05(L) <0.05(L) <0.05(L)
FLiP 045(N)  0.06(S)  <0.05(L) <0.05(L) <0.05(L) <0.05(L)
pred  _005(L) <0.05(L) <0.05(S) <0.05(L) <0.05(L) <0.05 (L)
L <0.05(L) <0.05(L) 062(N) <0.05(L) <0.05(M) 0.08(S)
bo _0.05(L) <0.05(L) 024(N) <0.05(M) <0.05(L) <0.05(S)
Image Classification
one-shot batched
never random all-high never random  all-high
FLIP <0.05 (M) <0.05(M) 008(S) <0.05(M) 068(N) <0.05(S)
Frile g 05 ) 035(N) 0.39 (N) 0.24(N)  0.61(N)  0.06(S)
FLp <0.05(L) <0.05(L) <0.05(M) <0.05(L) <0.05(S) 0.30 (N)
pred  0.05(L) <0.05(M) <0.05(M) <0.05(M) <0.05(S) 0.22 (N)
FLiP <0.05(L) <0.05(L) <0.05(L) <0.05(L) 0.06(S) 0.91(N)
bo 0.05(L) <0.05(M) <0.05(L) <0.05(S) 0.68(N) 0.18 (N)
—— FliPrye FliPpred FliPpo
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Figure 9: Average y, per-round percentage change on text
classification (the higher the better).
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Figure 10: Average y, per-round percentage change on image
classification (the higher the better).

(i.e., depending on the node’s JSD score) results in a statistically
higher F1 score than doing it randomly (random) or for all nodes at
all rounds (always). However, it is worth to remark that balancing
data implies a cost in terms of time overhead quantified in RQ3.

Interestingly, the effectiveness of the heterogeneous-data-
handler is driven more by the data inflow model than by the learn-
ing task. Despite the different data modalities and augmentation
techniques, both tasks mostly benefit from adaptation when data
evolves over time, showing how architectural adaptation responds
to system dynamics and task-specific characteristics.

These results are further supported by the analysis of the per-
centage change reported in Fig. 9 and Fig. 10. As discussed, with
stationary data, the improvement remains marginal until the end

Baresi et al.
Table 5: Statistical tests results on y3(R).
Text Classification
one-shot batched
never random once never random always
FLiP;ye <0.05(L) <0.05(L) <0.05(S) <0.05(L) <0.05(L) <0.05 (L)
FLiPpreg  <0.05(L)  0.08(S) <0.05(L) <0.05(L) <0.05(L) <0.05(L)
FLiPp,  <0.05(L) 0.06(S) <0.05(L) <0.05(L) <0.05(L) <0.05(L)
Image Classification
one-shot batched
never random once never random always
FLiPrye <0.05(L) 043 (N) 0.08(S) <0.05(L) <0.05(L) <0.05 (L)
FLiPpreq  <0.05(L) 022(S) 050(N) <0.05(L) <0.05(L) <0.05(L)
FLiP,,  <0.05(L) 0.17(S) 042(N) <0.05(L) <0.05(L) <0.05 (L)
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Figure 11: y3(R) on text classification (the lower the better).
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Figure 12: y3(R) on image classification (the lower the better).

of the FL process. With batched data, instead, the improvement
induced by all FLiP’s policies emerges early on in the FL process.

For the message-compressor, y3(R) distributions are shown in
Fig. 11 and Fig. 12, while Fig. 13 and Fig. 14 report the per-round
percentage change. The limited size of the model under training
also limits the impact that compression has on communication time:
indeed, the three baselines (including the one keeping compression
constantly active) and FLiP,eq are equivalent.

For image classification, FLiPy,, consistently leads to a 10 — 15%
average decrease of communication time both in stable and
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Figure 13: Average y3 per-round percentage change on text
classification (the lower the better).
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Figure 14: Average y3 per-round percentage change on image
classification (the lower the better).

unstable network conditions (Fig. 14). Nevertheless, statistical
test results (not reported for the sake of conciseness) do not
reveal a significant difference between y3 distributions (Fig. 12).
In summary, experiments highlight a favorable average trend,
but with an excessive variance that prevents a clear separation
between the distributions.

RQ1 Summary. Adaptive toggling yields a statistically sig-
nificant 5-10% performance improvement with stationary data
for the client-selector and, dually, with variable data for the
heterogeneous-data-handler. With the message-compressor,
we observe a 10-15% improvement in average, although without
statistical evidence related to the adaptation process.

4.2.2  RQ2: Offline Overhead.

Setup. The predictor-based (FLiPpreq) and BO-based (FLiPy,)
policies rely on a predictor trained offline to make decisions at
runtime. This research question aims to estimate the volume of
training data (i.e., (X, y) pairs) required to obtain accurate predictors
and the time required to collect such data.

For each learning tasks, baseline methods are replicated 10 times
on the 80 evaluation subjects, for a total of 2400 FL runs. As per Table
2, each FL run has a budget of 20 rounds, resulting in 19, 200 (x, y)
training samples for the client-selector and message-compressor,
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Figure 16: RQ2 results for image classification.

and 9, 600 for the heterogeneous-data-handler. These data points
are collected by applying baseline methods and are, thus, free of
any bias that might derive from the application of any FLiP policy.

For each pattern and learning task, we compare five models (De-
cision Tree, Linear Regression, Random Forest, Gradient Boosting
[22], and GPR) with increasing training data. The comparison is
based on the Percentage Root Mean Square Error (PRMSE) (the
lower the better) and r? score (the higher the better).

As shown in Fig. 15 and Fig. 16, all regressors perform well in
estimating the performance metric selected for all patterns and
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Figure 17: RQ3 results. For heterogeneous-data-handler, we
report the time overhead for generating synthetic data sepa-
rately from the training time.

both learning tasks. With the client-selector and heterogeneous-
data-handler, 100 samples (16min for text or 2.5h of computation
for images) result in an r? score greater than 0.92. With the
message-compressor and 1000 samples (2.8h for text or 4.3h of
computation for images), all models but the linear regressor have
accuracy greater than 0.8. Similarly, PRMSE approximately equals
14% in the worst case. RQ1 experiments adopt a Gradient boosting
regressor for text classification and a Decision Tree regressor
trained with 2000 samples for image classification. The latter, for
the image classification task, for a negligible accuracy cost, is
superior to its alternatives in terms of interpretability [30].

RQ2 Summary. FLiP shows the following offline overhead:
at most 2.5h of data collection to achieve accuracy > 92% for
client-selector and heterogeneous-data-handler, and at most
4.3h for the message-compressor.

4.2.3 RQ3: Online Overhead.

Setup. This RQ accounts for the costs sustained at runtime during
the FL process. We aim to quantify the computational time required
for the adaptation process to run FLiP. To this end, we compare
the duration of FL rounds in all experiments performed for RQ2
between FLiP and all baseline methods for the three patterns. For
the heterogeneous-data-handler, we also compare the additional
overhead necessary to re-balance the data.

Results. For the text classification task and client-selector, as
per Fig. 17a, FLiP adds no computational overhead and yields a
significant performance boost, indicating that adaptation is ben-
eficial. In contrast, with message-compressor, adaptation incurs
significant computation overhead without reducing communica-
tion time, suggesting it is not cost-effective for simpler tasks. For
image classification (Fig. 17b), using FLiP with client-selector and
message-compressor adds no computational overhead, suggesting
that adaptation is more beneficial for heavier learning tasks.

Concerning the heterogeneous-data-handler, for both learning
tasks, results confirm that performing data augmentation multiple
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times leads to a statistically significant increase of the duration of
the FL round (by 50% for text and 27% for images), counterbalanced
by the gain in accuracy discussed in RQ1.

RQ3 Summary. FLiP demonstrates a negligible difference in
time overhead when applied to the client-selector and, for image
classification, to the message-compressor. A task-dependent
27-50% increase in round duration is found for heterogeneous-
data-handler, balanced by an accuracy boost.

4.3 Discussion

We discuss the main findings from the experimental campaign,
along with the threats to validity and limitations [38].

4.3.1 Lessons Learned. The evaluated adaptation policies exhibit
distinct tradeoffs. The expert-driven rule set is a low-overhead base-
line but struggles under non-stationary dynamics (e.g., batched
scenarios) where optimal policies evolve. The predictor-based pol-
icy performs best, particularly with client-selector, indicating that
when pattern effects correlate with observable metrics, predictors
trained on historical data achieve a favorable performance-cost bal-
ance. Bayesian optimization (BO) effectively balances exploration
and exploitation in highly uncertain settings (e.g., heterogeneous-
data-handler with batched data), at the expense of higher compu-
tational cost. Although data collection incurs an upfront cost, it is
a one-time investment amortized over the FL system’s lifetime.

Adaptation effectiveness is task-dependent. Text classification
benefits more from adaptive client selection under evolving data
inflow, whereas image classification is more sensitive to data dis-
tribution stability and model size. These results support adaptive
architectural patterns as task-aware design choices rather than
universally optimal solutions.

Although FLiP does not explicitly model training phases, mode-
like behavior emerges implicitly, as runtime metrics evolve with
model maturity, making different patterns preferable at different
stages of the FL process.

Overhead results highlight the practicality of adaptive toggling.
With heterogeneous-data-handler, whether accuracy gains jus-
tify longer training depends on application priorities (e.g., critical
medical settings). For message-compressor, adaptation benefits are
limited by small model sizes and often dominated by environmental
stochasticity, indicating the need for more context-aware policies.

4.3.2 Threats to Validity.

External Validity. To mitigate external validity threats, we con-
ducted an extensive campaign over 80 evaluation subjects, totaling
4,800 FL runs per ML task, with each experiment repeated 10 times
and analyzed using Mann-Whitney U tests at a 95% confidence level.
FLiP supports analyses across varying federation sizes, FL rounds,
and parameter settings to improve generalizability. Nevertheless,
the evaluation is limited in terms of datasets, model architectures,
and FL patterns; results should therefore be interpreted as evidence
of feasibility rather than universal applicability, with broader eval-
uations left to future work.

Internal Validity. Internal validity threats stem from the choice of
numerical input parameters used to assess performance variations
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across architectural patterns. We vary data distributions (IID vs.
non-IID) to evaluate heterogeneous data handling while keeping
inputs consistent across experiments to reduce confounding effects.
However, selecting representative parameters remains challeng-
ing [6], and additional configurations require future investigation.

A methodological limitation of FLiP is that only one architectural
pattern can be toggled at a time. Simultaneous pattern activation
may introduce configuration conflicts (e.g., reduced data diversity
limiting data rebalancing effectiveness), which will be addressed in
future work. Security-oriented patterns (e.g., secure aggregation or
homomorphic encryption) could also be integrated but are driven
by privacy and trust concerns rather than performance trade-offs
and are therefore left for future work.

Construct Validity. Construct validity threats arise from potential
metric misuse. We report standard classification metrics (e.g., F1)
and basic count-based metrics (e.g., total FL round runtime RT,),
minimizing ambiguity.

5 Related Work

This section surveys related work on architectural solutions and
self-adaptation approaches in FL systems.

Architectural Solutions for FL. Previous studies analyze the
FL paradigm from a software architecture perspective. Zhang et
al. [42] compare four alternatives for system architectures of FL:
centralized, hierarchical, regional, and decentralized, and analyze
their communication overhead, model evolution speed, and overall
scalability. FLRA [26] is a pattern-oriented reference architecture
for FL systems. They derive an end-to-end blueprint, encompassing
phases such as job creation, model deployment, and monitoring, by
synthesizing both academic research and industrial best practices.

Lo et al. [27] and Di Martino et al. [13] build a catalog of ar-
chitectural patterns tailored to FL, of which the client-selector is
an example. Each pattern maps a specific stage in the FL model
life cycle, providing a straightforward blueprint for practitioners.
However, while their catalog offers important insights, it mainly
serves as a reference for recurring design solutions.

Several studies benchmark FL performance under varying cir-
cumstances. Li et al. [24] provide a foundational survey on FL,
addressing how constraints such as limited on-device resources,
non-IID distributions, and user privacy shape the need for novel
optimization schemes. Lai et al. [21] developed FedScale, a FL bench-
marking suite featuring realistic datasets and a scalable runtime
environment, enabling reproducible FL research. FedScale offers
high-level APIs to implement, deploy, and evaluate FL algorithms
across diverse hardware and software with minimal effort. Previous
work focuses on node selection strategies [15, 28], highlighting
selection principles (e.g., data heterogeneity, hardware constraints),
scheduling challenges, and research directions.

In summary, foundational studies on FL from a software archi-
tecture perspective [26, 27] primarily consist of qualitative analyses
of foundational literature, combined with industrial case studies.
Our work provides empirical evidence on how architectural de-
cisions taken at runtime affect FL performance. The most recent
contribution in this line of research [9] selects, implements, and
quantitatively compares three patterns from Lo’s catalog [27]. Their
results highlight trade-offs among accuracy, latency, and computa-
tional efficiency when statically chosen for an entire FL. Our work
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represents a critical step forward, introducing dynamic pattern
activation on a per-round basis.

Self-adaptation in FL. Baresi et al. [4] frame FL as a self-
adaptation problem that, based on a target accuracy for the new
round, estimates the number of epochs considering clients’ resource
limits and accuracy from the previous two rounds. Wang et al. [36]
propose a control algorithm that determines the best trade-off be-
tween local update and global parameter aggregation to minimize
the loss function under a given resource budget. Li et al. [23] pro-
pose a method where the server leverages historical data to predict
the feasible workload for each client. Zhang et al. [43] propose
adaptively adjusting the batch size for each client at every round
to mitigate performance degradation caused by non-IID data. The
work of Ilhan et al. [19] addresses the challenge of down-scaling
the model by incorporating “early exit classifiers” to improve the
cost-effectiveness of training on resource-constrained clients. Singh
et al. [34] develop a FL strategy to address heterogeneous data by
applying adaptive masking on unlabeled data, reducing entropy
and enhancing confidence of the model’s predictions.

While these approaches demonstrate the value of self-adaptation,
they primarily focus on fine-tuning low-level training hyperparam-
eters (e.g., epochs, batch size) or the model structure itself and
not on adaptation at the architectural level. Our work is the first
to bridge this gap by applying self-adaptation principles to the
selection and toggling of architectural patterns, a fundamentally
different and complementary approach to optimizing FL systems.

6 Conclusion

This paper presents FLiP, a novel framework to adaptively toggle ar-
chitectural patterns at the beginning of each FL round. We quantify
the benefits of FLiP through an experimental campaign on text and
image classification tasks, considering both IID and non-IID client
data distributions and different system settings (e.g., federation size,
client data inflow, and system congestion affecting computation
and communication) that emulate realistic FL deployments. Our
findings indicate that FLiP can lead to an improvement in learning
accuracy and introduces negligible computational overhead, both
offline and online, for two of the three selected patterns.

Future work will address the points raised as threats to validity,
along with a possible extension of the set of patterns under analysis,
thus further investigating the pros and cons of dynamically toggling
additional architectural patterns in FL systems.

Data Availability

The replication package is publicly available on Zenobo [2].
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