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Abstract—Digital Twins (DTs) have emerged as a promising
concept, representing a new paradigm in smart systems en-
gineering. However, the development of DTs pose significant
challenges, particularly on the modeling and data management
aspects. This paper presents a holistic approach to develop a DT
implementation using a domain model derived from the standard
SSN/SOSA ontologies. The proposed approach leverages the
MERODE modeling method for rapid prototyping and valida-
tion, guaranteeing robust model quality checks and enabling
the creation of flexible and reusable code adaptable to different
architectural settings. Data management is enhanced through the
use of the SOSA/SSN ontology, enabling semantic data models
and inference strategies to achieve semantic interoperability. By
combining MERODE and IoT ontologies, our approach aims to
take a step forward in addressing the challenges linked to system
complexity and data management in the development of DT. The
proposed approach was validated by instantiating the proposed
model with a real-life case.

Index Terms—Conceptual modeling, Model-Driven Engineer-
ing, Digital Twins, Ontology, Internet of Things, Model-Based
Software Engineering

I. INTRODUCTION & MOTIVATION

Digital Twins (DTs) have emerged as a prominent concept,
representing a new paradigm in the field of smart systems
engineering. A DT refers to a virtual replica or simulation
of a physical object, process, or system that enables real-time
monitoring, analysis, predictive maintenance, and optimization
[18]. It offers enhanced system management capabilities by
leveraging real-time data obtained from the components of the
system. Demonstrating their efficacy across many application
domains, DTs have established themselves as an indispens-
able element within the Model-Based Systems Engineering
(MBSE) field [4]. Moreover, adopting a Model-Driven Engi-
neering (MDE) approach in the development of DT, is crucial
to fully leverage their potential [19].

While the benefits of DT have been demonstrated in many
areas, their development, operation, and evolution pose signif-
icant challenges. In fact, at present, no tool or platform can
fully support the development of a DT [13]. The development
of digital twin-based systems requires a holistic systems en-
gineering approach where the modeling and data management
aspects are critical [18]. Considering the complexity of IoT
systems, maintaining a consistent system structure is a non-
trivial task. Part of such an issue can be addressed from the

perspective of MDE [1] using ad-hoc domain models. These
models act as the foundational building blocks for developing
robust information systems, providing a solid foundation for
capturing and organizing domain-specific knowledge [11].

In this paper, to facilitate the holistic development of a DT
for an IoT system, we have derived a domain model based on
a standard IoT ontology. The domain model has been designed
to be integrated as a module within “regular” information
systems, so as to facilitate enriching these systems with DT
features. We adopt the MERODE modeling method, which
enables rapid prototyping and validation of the model using
real-life cases. MERODE further offers the advantages of
thorough model quality checks, and a layered approach which
allows for the required flexibility and reusability of the code in
different architectural settings [15]. From the data management
perspective, ontologies offer a relevant approach to achieving
semantic interoperability, as they enable the definition of
semantic data models combined with domain knowledge, as
well as the formulation of inference strategies [8], [11]. By
leveraging the advantages offered by combining MERODE
and IoT ontologies, our intention is to move a step forward
in addressing the system complexity and data management
challenges involved in the development of IoT systems and
the corresponding DT.

The paper is structured as follows. In Section II, we present
a background on MDE and data management in DTs. The
section concludes with an analysis of some standard ontologies
for the IoT. Section III provides an overview of the research
methodology. Section IV briefly introduces the MERODE
approach. Section V presents the development of a DT by
combining MERODE and the SSN/SOSA ontology. In Section
VI we present the evaluation of the approach based on a
real-world use case. Finally, in Section VII, we present the
conclusions and future work.

II. BACKGROUND & RELATED WORK

This section presents the evolution of modeling in sys-
tems engineering from craft-based development to the new
paradigm of DTs. Then, it provides an overview of relevant
works that have explored the application of data management
techniques for IoT. Finally, we will discuss two of the most
important ontologies for IoT, namely the Semantic Sensor
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Network (SSN) and the Sensor, Observation, Sample, and
Actuator (SOSA) Ontology.

A. Model-Driven Engineering in Digital Twins

In the context of DT, MDE aims to create a system that
effectively captures the behavior, structure and relationships
of IoT system components [2]. By representing the digital
version of the IoT system through a model, it is possible
to simulate, analyze and optimize the system’s performance
without directly manipulating the physical system itself. A
study from [18] explored the evolution and adoption of mod-
eling in systems engineering from craft-based development to
the adoption of more sophisticated models as DTs. In this
subsection, we present an adapted perspective on this study
by shifting the focus towards the development of software
systems, rather than physical artifacts. Figure 1 shows the
evolution of modeling and engineering applied to DT.

In the early days of craft-based software development, peo-
ple relied on practical knowledge and trial-and-error to develop
software solutions. As complexity increased and communi-
cation became important, model-based development emerged,
using sketches and designs to guide production. The adoption
of MBSE improved product quality and communication within
development teams, facilitating advancements in engineering
[18]. However, using sketch and blueprint models does not
allow to create a strong and formal link between the model, a
physical object and its digital representation.

Model-driven engineering uses executable models to au-
tomatically generate software and/or digital objects without
human intervention. The models thus establish a formal link
between the design and the generated software [18]. This
approach allows for easy updates and adaptations by modi-
fying the model rather than the software directly. In MDE,
models are used as blueprints for software development and
they rely on a Metamodel which defines the vocabulary used
in the input models (i.e., abstract syntax, concrete syntax,
well-formedness rules, and semantics). The MDE process
involves the generation of multiple intermediate models using
generators, which are then utilized to produce a final artifact
(i.e., software and/or digital objects).

With model-driven engineering, the connection between the
model and the physical artefact is typically lost once the
physical artifact is modified. As a result, the software that
represents the physical artifact does not remain synchronized
with it. In recent years, the concept of the DT has emerged to
address this limitation [18]. DT represents a next stage, where
the physical object is continuously connected to its digital
counterpart throughout the entire lifecycle. A key concern in
DT is ensuring the continuous near-real-time synchronization
of the state between the DT and the physical artifact. This
enables a consistent and up-to-date representation between
a tangible entity and its digital replica facilitating real-time
monitoring, simulation, and testing of the entity’s performance.
As a result, this integration empowers stakeholders to make
informed decisions and drive operational optimization by
harnessing the insights derived from the DT.

B. Data Management in Digital Twins

According to [17], a DT adheres to a five-component
architecture described as a five-element tuple:

MDT = ⟨PE, V E, Service,Data, Connection⟩

Where PE represents a Physical Entity of the real world;
VE the corresponding Virtual Entity; Service the operations
provided for both entities; Data the information produced,
processed, and exchanged between these elements, and Con-
nection indicates how the parties are linked. Figure 2 depicts
a visual representation of these five dimensions.

The Data component serves as a point of ingestion of the
original data from these systems and of return at the right time
to direct the interactive optimization process resulting from the
interaction between them [5]. Often, in DT systems, real-time
data is extracted from sensors or actuators which are associated
with the Physical Entity component. The corresponding Virtual
Entity is then defined as a model that virtually replicate the
characteristics and behavior of the Physical Entity. However,
achieving a consistent mechanism for managing data across
DT systems is a non-trivial task.

In 2022, a systematic literature review on data management
solutions in the DT context was published [5]. This review
analyzes challenges and key points about data in the context
of DTs identifying issues, trends, and opportunities. According
to [5], there are five well-known challenges that a DT system
should properly address in the context of data management.
Providing Data integration is required to combine data from
multiple sources to provide a high-level unified view that
makes the data available for analysis and use. Support for
Data heterogeneity is required because of the significant
semantic, terminological, and syntactic differences across dif-
ferent application domains. Data Interoperability is required
to make data accessible, reusable, and understandable by all
entities involved in the system. Finally, data should be easily
accessible (Data Search) and trustworthy (Data Quality) so
that value can be derived from it.

The survey shows that dealing with data integration, hetero-
geneity, interoperability, search, and quality are common is-
sues observed in developing MDE systems for DTs. Moreover,
the study highlights that the maturity level of data management
solutions remains at an early stage, necessitating substantial
efforts for enhancement.

In light of this, in [5], authors propose several techniques to
address, at least partially, the challenges associated with data
management in the DT context. Adopting a reference archi-
tecture that organizes data/information into distinct abstraction
layers can enhance the quality of raw data. By leveraging the
concept of “separation of concerns”, providing high-quality
data can be facilitated. Therefore, it is logical to seek a
solution based on a well-defined conceptual modeling method-
ology, such as MERODE. To address the challenge posed by
significant semantic, terminological, and syntactic differences
across various application domains (Data Heterogeneity), the
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adoption of a standardized ontology can provide an effective
solution [5]. The utilization of a standardized ontology for
representing entities in the context of DTs, such as sensors,
power plants, and manufacturing, can effectively mitigate
semantic heterogeneity, ensuring consistent comprehension of
different or similar concepts regardless of modeling disparities
[5]. Furthermore, ontologies enable a shared understanding
and interconnectedness of concepts across various domains or
disciplines, facilitating the Data Interoperability of DTs [12].

C. Ontologies for the Internet of Things

One of the most important aspects to develop DT is the
capacity to mirror and interact with the physical environment.
For that, IoT technology is essential, being the link between
the physical and the digital world. Several ontologies have
been developed to conceptualize and represent IoT. A well-
known and generally accepted ontology for IoT, is the Seman-
tic Sensor Network (SSN) Ontology designed by the W3C
Incubator group. SSN provides a standardized framework
for describing sensors, actuators, observations, features of

interest, observed properties, and more. By defining a common
semantics and structure, SSN facilitates interoperability and
enables seamless data exchange and collaboration among het-
erogeneous IoT systems. In addition, they offer researchers and
practitioners a powerful tool for enhancing data management,
knowledge representation, and decision-making processes.

SSN has served as the basis of many different ontologies,
among others, the SOSA ontology, one of the most used
ontologies for IoT systems. With its formal representation
and standardized vocabulary, SOSA provides a comprehensive
framework for modeling and interlinking devices’ measure-
ment, their associated metadata, and the physical entities
involved in the IoT ecosystem [6]. As such, it supports a
wide range of applications and use cases, including smart
environments. The SOSA ontology encompasses over fifty
distinct classes, facilitating a granular representation of various
aspects of IoT data [6]. These classes are interconnected
through more than a hundred object properties, forming a
rich and expressive knowledge graph. The ontology has been
designed to be efficient and compact, allowing for easy imple-
mentation and minimizing resource overhead on IoT devices.
Another advantage of the SOSA ontology is its lightweight
nature, making it highly suitable for resource-constrained
IoT environments [10]. The widespread adoption of SOSA
reflects its effectiveness in enabling seamless integration and
interoperability among heterogeneous IoT systems.

For all of these reasons, we chose to reference both SNN
and SOSA standard specifications for representing IoT entities
in our approach. Their modular structure and class-based
approach allow us to represent the different components of IoT
systems in a detailed and interconnected manner, facilitating
integration and interoperability among the components and
services involved. However, the SSN and SOSA ontology
models, as-it-is, are not “operational” or “ready for use” in
the context of MDE systems. Additional steps are necessary
to operationalize the SOSA ontology by transforming it into
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a Platform-Independent Model (PIM) that can be effectively
interpreted by an MDE system. To achieve this, the concepts
from the ontology need to be mapped to appropriate classes,
attributes and associations.

III. METHODOLOGY

In this section, we present an overview of the research
steps we followed to operationalize SOSA to a PIM. The key
steps and involved components are depicted in Figure 3 as an
instantiation of the last column in Figure 1.

As a starting point, based on the SSN/SOSA ontology, we
developed a generic data model representing the structural
view of the domain model. Following the MERODE method-
ology, the data view is completed with default behavioural
and object interaction views. In line with Design Science
Research [7], we adopted an iterative approach, switching be-
tween build/design and evaluation through prototyping, aiming
to continuously enhance the quality of the domain model.
The evaluation step aimed at verifying 1) that the domain
model was designed to be static and standardized, enabling
its reusability in the development of various IoT systems and
2) that it can serve as executable model for the automated
generation software using a code generator.

The final evaluation of the resulting domain model is done
through the implementation of a real life case using the gen-
erated software. In the following sections, we present a brief
introduction to MERODE (section IV), the model that was
designed (section V) and the evaluation on the Leuven.cool
case (section VI).

IV. THE MERODE APPROACH

In this section we present an overview of the MERODE
approach, highlighting its main features, the domain model
used to generate the Enterprise Layer (EL), System Service
Layer (ISL), and related tools.

A. MERODE in a Nutshell

Over the years, various approaches have been developed to
design and develop information systems, aiming to improve
their effectiveness and alignment with organizational needs.
One notable approach in this field is the MERODE approach
[15]. The MERODE approach builds on UML, but uses only
a subset of its constructs, complemented with proprietary
notions, to enable the generation of fully functional code from
conceptual models. In particular, the class diagram is refined
to an “existence dependency” graph, and object interaction
is formalized by means of the Communicating Sequential
Processes (CSP) process algebra [14].

B. The MERODE Domain Model (EDG, OET, and FSMs)

A typical MERODE analysis or conceptualization consists
of three views: a so-called Existence Dependency Graph
(EDG) similar to a UML class diagram, a proprietary concept
called Object Event Table (OET) defining object-event inter-
actions, and a set of Finite State Machines (FSMs). We can
refer to the set of these three models as the Domain Model.

Figure 4 depicts the three models describing the domain of
people renting a car. The Existence Dependency Graph (EDG)
is designed to define business object types (classes) and their
associations. The EDG is represented by a UML class diagram,
where all associations express existence dependency. Each
class in the diagram is also associated with a State Chart (SC)
or Finite State Machine (FSM).

Business event types, considered phenomena shared be-
tween the real world and the information system [9], are
operationalized as call events. These events can trigger state
changes in multiple business objects. The Object-Event table
(OET) maps business event types to business object types,
indicating the type of state change caused by each business
event type: creation (C), modification (M), or ending (E).
The OET helps identify the necessary operations for handling
events in corresponding classes. In particular, the propaga-
tion rule specifies that a master object can always “see”
the business events to which its dependents react, thereby
participating in those events as well. Consequently, a single
business event can trigger state changes in multiple business
objects, allowing them to synchronize and interact through
their joint participation in these events.

Finite State Machines (FSMs) define the behavior of objects
by illustrating how events cause state transitions. Each object
type follows a default lifecycle, involving creation triggered by
any creation event (*/C), multiple modifications triggered by
modification events (*/M), and transitions triggered by ending
events (*/E) that lead to the final state. More specific FSMs
can be defined to add desired behaviors to the system.

Domain models can be created using the MERLIN tool1,
which also provides features for checking the consistency and
readiness of the models for transformation.

C. The MERLIN Code Generator for MERODE
MERLIN Code Generator2 is a standalone Java application

that can be used to generate code from a MERODE domain
model exported from MERLIN as .mxp file. Two different
types of code can be generated: a Java prototype of the
application, or a RESTful web application. Both solutions
are based on the logic defined in the domain model. The
Java prototype encompasses a Domain Layer comprising the
database and business logic, and a series of default services
that are accessible through a default Graphical User Interface
(GUI). The GUI has one tab per object type defined in the
domain model, displaying a list and details of the objects
that exist in the system, and it offers buttons for triggering
the business events, thus allowing to create, modify and end
object instances. Furthermore, the prototypes are enhanced
with feedback, both textual and graphical. In particular, the
models are embedded in the application, thus enabling the
tracing of the prototype’s behavior back to the models and
validating their semantic quality.

The RESTful web application consists of a Maven project,
containing the same Domain Layer and offering a range of

1https://www.merlin-academic.com/
2https://merode.econ.kuleuven.be/CodeGeneration.html
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Fig. 4: The MERODE Domain Model.

API services for each business event and for querying data
from the system. Instead of triggering the business event types
through buttons in the GUI, they can be invoked through
POST API services.To retrieve information about the system’s
entities, GET requests can be made by directly referring
to each instance of the objects. Figure 5 provides a visual
representation helping to clarify the mapping of business
events into API services.

The logic behind the creation of these APIs is orchestrated
by the constraints, rules, and existing dependencies defined
in the domain model. For example, if an object β has a
dependency on the creation of another object α, the API to
create the object β cannot be executed unless the object α has
been created first. This ensures that the required dependencies
are satisfied before proceeding with the creation of the object
β. The approach proposed in this paper considers the RESTful

Service Layer: Web APIs

Domain Layer: Data

MERODE models EndCreateCreateCreate EndEndModifyModifyModify

ReadReadReadRead

Domain Layer: Business Logic

GET

POST

Fig. 5: The Three Layers of MERODE.

web application APIs for generating safe IoT system entities
and controlled functionalities.

V. SUPPORTING DIGITAL TWINS SYSTEMS INTEGRATING
THE MERODE APPROACH

This section delves into the mapping process through which
we derived the domain model from the SSN/SOSA ontology.
Then, we discuss constraints and changes applied to the
domain model derived.

A. Mapping of SSN/SOSA Ontology to Domain Model

To create a PIM for IoT that can be effectively interpreted
by a MDE system, we started with an in-depth examination
of the SOSA ontology’s standard specifications. To translate
the necessary classes and association into a MERODE-model,
we adopted an iterative approach. In each iteration, after com-
pleting a version of the model, we conducted tests to assess
its effectiveness to represent various cases of IoT systems and
to identify improvements. The first iteration started with the
straightforward translation of the standard. The tests revealed
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several deficiencies mostly related to the associations between
the classes, and revealed ambiguities in the interpretation of
SOSA concepts. We therefore made necessary modifications
to the model in subsequent iterations, gradually enhancing its
quality both in terms of model structure as definition of the
classes. The final diagram is depicted in Figure 6.

Table I lists all the nine classes involved in our standard
IoT EDG. In defining the model, we aimed to adhere closely
to the standard, while at the same time generalizing certain
aspects. In particular, we chose to consolidate and generalize
certain classes from the standard into a single class. Out
of these, five classes align precisely with the SSN/SOSA
standard, namely: Platform, Feature Of Interest, Procedure,
Property and Result. The classes Device and Device Usage
serve as generalizations of one or more classes in the stan-
dard. Specifically, Device encompasses the sosa:Sensor and
sosa:Actuator classes, while Device Usage encompasses the
sosa:Observation, sosa:Actuation, and sosa:Sampling classes.
Additionally, two classes introduced by us are Registered
Device and Platform Deployment. The former is used for
referring to a specific instance of a device in the platform,
while the latter refers to a specific instance usage of the
platform for a feature of interest.

Starting from the top, we have the class Platform which
represents an entity on which IoT devices are hosted. The
Feature of Interest class represents a real-world thing on
which measurements take place. The Device class represents a
component capable of sensing or actuating in an IoT system.
The Procedure class represents a specific process or method
followed by a device to generate a result of a measurement.
It encapsulates the steps, actions, or algorithms involved in
carrying out a particular task or operation. The Property class
specifies a measurable characteristic associated with a feature
of interest. The Result class represents the value of the output
obtained from a measurement performed by a device. Device
Usage class specifies the type of usage of a device to perform
observations or actuations and when they are made.

B. Adding Multiple Path Constraints and Customized State

In some cases, objects are existence dependent on a master
object. This means that an instance of such an object can
be created if and only if an instance of the master class
exists [15]. Sometimes an object type is indirectly dependent
on the same master object type in two different ways (i.e.
via multiple paths). For example, in Figure 6, both Property
and Platform Deployment are existence dependent on the
Feature of Interest class. Consequently, the Device Usage
class is existence dependent on both Platform Deployment
and Property and indirectly existence dependent on Feature
of Interest. From a logical point of view, the purpose of
the Device Usage class is to provide the means to specify
the type of operation to be performed on a device, such as
observation or actuation. However, for the safe execution of
these operations, the Device Usage class relies on operational
information obtained from the master classes it is connected
to. In our model, we have established business rules to enforce

these requirements and ensure the secure execution of device
operations. These rules dictate that an instance of the Device
Usage class must adhere to three indirectly multiple path
constraints depicted in Figure 7.

As an example, we consider the second rule. It states that the
Feature of Interest, (i.e., a private garden), must be consistent
across both the derived Property (i.e., relative humidity of
that specific garden) and the corresponding Platform Deploy-
ment. In this context, consistency means that the instance of
the Property class and the associated Platform Deployment
must both reference the same instance of the Feature of
Interest class. This constraint is explicitly expressed within
the Device Usage object: self.Property.FeatureOfInterest ==
self.PlatformDeployment.FeatureOfInterest. By imposing this
constraint, we ensure that each Device Usage object relates
to only one Feature of Interest and that each event type of
the Device Usage involves a single object of the Feature of
Interest.

Additionally, we have refined the lifecycle of the Registered
Device and Device Usage entities. The “Device Usage” class
enables the deployment of a device. By creating an instance
of the “Device Usage” object, the planned state is achieved.
Next, a modifying method “setReady” is executed and the
ready state is reached, indicating that the device is ready for
use. Finally, by executing the “DeviceDeployment” event, the
device starts to perform the measurement. In the case of the
“Registered Device” FSM, after creating an instance of the
object, the “DeviceDeployment” method can be executed to
achieve the deployed state. If you want to deploy the same
device for other measurements, it is required to return to the
initial state by executing the “DeviceUndeployment” method
first, thereby ending the previous device usage.

VI. EVALUATION

In this chapter, we first present a brief explanation of the
use case on which the proposed approach was evaluated.
Then, we check the usability of the approach focusing on its
implementation and simulation. Finally, we acknowledge a set
of limitations regarding the proposed approach.

A. Use Case: Leuven.cool

The Leuven.cool project, conducted by KU Leuven in
collaboration with the climate NGO Leuven2030, Leuven
City, and the Royal Meteorological Institute (KMI), aims to
examine the urban microclimate of Leuven [3]. The project is
centered around understanding how natural elements can help
reduce negative impacts. To achieve this, weather stations have
been installed in both private gardens and public locations
throughout Leuven to measure the microclimate. Figure 8
depicts the network of the weather stations in Leuven and
its stations.

The research project provides valuable insights into the opti-
mal spatial configuration of green and blue elements, enabling
managers and decision-makers to effectively plan and manage
urban green (plants) and blue (water) areas to maximize their
cooling effects. Each area is equipped with a weather station
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Fig. 6: The MERODE Domain Model derived from the SSN/SOSA Ontology.
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Derived EDG SSN/SOSA Ontology Description
Platform sosa:Platform A Platform is an entity that hosts other entities, particularly Sensors, Actuators, and other Platforms.
Feature Of Interest sosa:FeatureOfInterest The thing whose property is being estimated or calculated in the course of an Observation to arrive at

a Result.

Device sosa:Sensor Device, agent (including humans), or software (simulation) involved in, or implementing, a Procedure.
sosa:Actuator A device that is used by, or implements, an (Actuation) Procedure that changes the state of the world.

Procedure sosa:Procedure A workflow, protocol, plan, algorithm, or computational method specifying how to make an Observation,
an Actuation, or a Sampling.

Property ssn:Property A quality of an entity. An aspect of an entity that is intrinsic to and cannot exist without the entity.

Device Usage sosa:Observation Act of carrying out a Procedure to estimate or calculate a value of a property of a Feature Of Interest.
sosa:Actuation An Actuation carries out an (Actuation) Procedure to change the state of the world using an Actuator.

Result sosa:Result The Result of an Observation, Actuation, or act of Sampling.
Registered Device ✗ This class allows for the registration to a specific instance of a Device in a specific Platform.
Platform Deployment ✗ This class allows to align a specific instance of Feature of Interest within a specific Platform.

TABLE I: Mapping Between the SSN/SOSA Ontology and the EDG Domain Model.

Fig. 7: Multiple Path Constraints in Device Usage.

that includes various sensors, such as temperature, humidity,
wind speed, UV radiation, and precipitation. To access real-
time urban climate data, it is possible to visit the Leuven.cool
website3, which provides access to the map of weather stations
and where each dot represents a DT of a garden or public area.

B. Feasibility of the Approach

To assess the feasibility of our approach, we tested the
usability of the derived domain model by populating it with
instances representing a weather station of the Leuven.cool
project. To discuss how the data management works, we
consider the five components of a DT architecture, discussed in
Section II-B. The domain model derived from the SSN/SOSA
ontology, the java application prototype, and the web applica-
tion are available here4.

Physical Entity (PE). The physical entities in this scenario
encompass the weather station itself, along with its set of
sensors, and the surrounding environment. Specifically, within
the Leuven.cool project, a weather station consists of various
sensors designed to monitor a range of weather phenomena.
These include a temperature sensor, a humidity sensor, two
wind sensors for measuring wind speed and direction, a
radiation sensor, and a UV sensor.

Virtual Entity (VE). Virtual entities are represented and
described by the domain model derived from the ontology.

3https://leuven.cool/
4https://anonymous.4open.science/r/ModDIT-23

A minimal representation of the instances in each class of
the model is depicted in Figure 9. To begin, we established
instances of the top-level classes: Platform, Feature of Interest,
and Device. We defined a general platform instance on which
devices would be hosted, designated the garden as a Feature
of Interest for which measurements would be collected, and
created a collection of sensors as instances of the Device
class. Next, we proceeded to create instances for the second-
level classes: Procedure, Property, Platform Deployment, and
Registered Device. We generated five instances of the Property
class to represent measurable attributes of real-world objects
(e.g., temperature, relative humidity, wind speed, wind di-
rection, solar radiation, UV index), and an additional five
instances for Procedure to describe the operational methods of
the devices. Instances of Platform Deployment and Registered
Device were created by referring to the master object instances.
Subsequently, by creating an instance of the Device Usage
class, it became possible to set up the deployment of a
device by referencing the instances of the second-level classes.
Finally, for each device, we defined the Result class containing
attributes related to the values measured by the device.

Service. The services provided in this approach consist of
a set of APIs generated in the web application. The entities
involved in the IoT system can perform a set of actions by
directly executing an API to trigger a business event or inspect
data. The execution of these APIs is orchestrated following the
rules and constraints defined during the design of the domain
model.

Data. Data management in the context of MERODE is
based on interconnected object types, which are effectively ad-
dressed by the EDG domain model. To cater to the persistence
of data, the EDG model is transformed into a database schema.
In this process, each object type will by default be mapped to a
corresponding database relation. To cater to proper implemen-
tation, associations will by default be converted to foreign keys
referring to the ID of the corresponding master object type.
API services rely on the database schema to ensure compliance
between services and data.

Connection. The bi-directional communication between the
Physical and Digital entities is provided using of API ser-
vices. The API-oriented communication mechanism allows for
reliability and robustness in communications since business
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Fig. 8: The Leuven.cool Network and its Weather Stations.
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Fig. 9: Minimal Example of Instances Allocation in the EDG Domain Model.

rules of entities (business events) have been already managed
in the domain model. Thus, through the web application and
APIs, users can interact with both physical and digital entities.
For instance, it is possible to initiate pull operations, such
as measuring the temperature of a garden, and then the web
application retrieves data from the physical environment and
presents it to the user in a digital format. On the other hand,
also push operations are allowed, since users can trigger ac-
tions that have an impact on the physical world. For example,
users can utilize the web application’s API to send a command
for turning off a device in the garden.

C. Limitations

Currently, this study has some limitations concerning the
domain model derived from the SSN/SOSA ontology and
regarding some technical aspects.

Firstly, the attributes in the EDG domain model still need to
be defined. The EDG model was derived by mapping classes
from the SSN/SOSA ontology, without considering yet the

inclusion of attributes. In the current implementation, only a
single generic attribute “name/id” has been provided in each
class, to allow for simulating and evaluating the proposed ap-
proach. In addition, the bidirectional communication between
the physical and digital entities can only occur through the
manual execution of API services, which poses a constraint in
the automation of communication processes.

Lastly, the proposed approach allows for an “out of the
box” representation of a DT system, without considering the
actual technical implementation of the system. A full-fledged
implementation of a DT will require more complex details
than those described in this study.

VII. CONCLUSION & FUTURE WORK

In this work, we have introduced an approach that leverages
the MERODE modeling method along with a generic domain
model derived from the SSN/SOSA ontology to take a signif-
icant step forward in engineering DT systems. Our approach
demonstrates the effectiveness of leveraging a domain model
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from standard ontologies in specifying the digitalization of
IoT technologies. By employing the domain model, we can
accurately represent and describe the digital aspects of IoT
technologies, facilitating their seamless integration into DT
systems. This solution enables the verification and monitoring
of expected behavior with minimal computational costs and
development efforts. The strength of our approach lies in the
modeling method provided by MERODE, which allows for
rapid prototyping and validation using real-life cases. In addi-
tion, ontologies facilitated the definition of semantic data mod-
els combined with domain knowledge and the formulation of
inference strategies, further enhancing the effectiveness of our
approach. This promoted data integration and interoperability,
allowing for seamless management of heterogeneous data into
DT systems. To evaluate the feasibility of our approach, we
applied it to a real-world use case from the Leuven.cool
project. Through the use of web APIs, we achieved manual
bi-directional communication between physical and digital
entities, effectively replicating real-world actions in the digital
realm.

However, implementing full-fledged DTs can be a non-
trivial task. While our approach does offer robust software
engineering methods and practices to ensure the effectiveness
and reliability of data exchange, there is still ongoing work
required to address technical implementation aspects within
the scope of our study.

We have identified several areas of focus that we intend to
address in the near future. One of our goals is to enhance the
usability of the RESTful web application by implementing a
web interface.

Then, we plan to replace the current manual communication
with bidirectional automated communication between physical
and digital entities. The study conducted by [16], provides
evidence of the effectiveness of integrating MERODE with
BPMN and DMN, resulting in a modeling approach that is
process, data, and decision-aware. The study also demonstrates
the successful operationalization of this approach, resulting in
an executable process and decision system. This integration
enables the realization of an integrated view of data and pro-
cesses, ensuring enhanced coherence and alignment between
operational activities and domain concepts. Building upon
these findings, our objective is to automate the communication
between physical and digital entities.

Finally, we plan to focus on implementing the attributes
in the EDG domain model, using an iterative approach that
involves testing and applying improvements to the model. By
employing this iterative methodology, we aim to achieve a
more comprehensive and refined representation of the ontol-
ogy, enhancing its accuracy in describing and representing the
real-world aspects within the context of a DT.
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