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Abstract. Business processes require continuous changes or interven-
tions to remain efficient and competitive over time. However, implement-
ing these changes—such as reordering or adding new tasks— can neg-
atively affect the overall process performance. A longstanding problem
in Business Process Management is that of forecasting ex-ante the val-
ues that process performance measures will assume after implementing
changes. To achieve this, the concept of Digital Process Twins, which
extends the well-established Digital Twin paradigm, paves the way for
new interesting opportunities. Digital Process Twins enable enhanced
what-if analysis by virtually predicting process performance under vari-
ous changes, thus allowing for informed decision-making before actuating
process changes in the real world. However, despite recognition as one
of the new key enablers of modern process re-engineerization, a compre-
hensive approach to implementing Digital Process Twins is still lacking.
This paper proposes a novel conceptual architecture for deploying Digital
Process Twins to address this gap. Additionally, we introduce DoLLY, a
framework that implements such conceptual architecture using a multi-
modeling approach combining domain data and process modeling along
with a data-driven process simulation technique.
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1 Introduction

Nowadays, organizations constantly strive to enhance and sustain the efficiency
and performance of their operational processes [16|. This necessity is fueled by
several factors, including the increasing competitiveness of the global market,
environmental shifts, variations in resource availability, emergent business op-
portunities, and the advent of new technologies [15]. A notable example of these
advancements is the emerging field of JoT-Enhanced Business Processes [8}/9,33],
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where IoT devices are increasingly being integrated into processes to optimize
further and automate business operations. However, for a long time, a problem
in the field of Business Process Management is that of what-if process analysis:
predicting the values that one or more process performance measures will assume
after a given business process changes or interventions |4}/15]/1§].

A similar problem has been addressed in mechanical and industrial engineer-
ing using the Digital Twin paradigm. Digital Twins are virtual replicas of real-
world systems synchronized at specific levels of detail. They accurately predict
the performance and behavior of their physical counterparts over time, offering
valuable insights for optimization and decision-making [19]. Initially adopted in
the manufacturing sector to virtually replicate, simulate, and predict the perfor-
mance of physical machines, the concept of Digital Twin is starting to be applied
to organizational processes, providing a new approach to re-engineering modern
business processes [15[18]. Gartner estimates that by 2026, 25% of global enter-
prises will move towards creating Digital Twins for their business processes |22].

In light of this, the integration of Business Process Management practices
with the Digital Twin paradigm is being seen as a promising solution for helping
organizations manage process changes while maintaining resilience and control
over their operations [4,|15,(18]. Just as traditional Digital Twins replicate and
predict the performance of physical assets, Digital Process Twins offer analogous
capabilities for business processes. Implementing changes in business processes
typically involves significant time, resources and risk of failure, leading to high
expenses [16]. This integration facilitates what-if process analysis, allowing or-
ganizations to simulate potential changes and predict their impact on process
performance ez-ante in a virtual, safe, and risk-free environment [15,18}25].
However, despite being recently recognized as a key enabler for digital trans-
formation in organizational processes |4,[15}25], there is currently no detailed
framework for fully exploiting the opportunities that a Digital Process Twin can
provide [18].

The contributions of this work are twofold. First, we propose a novel concep-
tual architecture for implementing Digital Process Twins. The proposed archi-
tecture employs heterogeneous digital models and Business Process Management
techniques to replicate the as-is process and reason about the performance of a
to-be process after virtually implementing process changes. Secondly, we present
DoLLy, a framework that implements the proposed Digital Process Twin’s con-
ceptual architecture. DOLLY uses a multi-modeling approach that combines an
IoT domain model with the MERODE methodology and BPMN, enabling the
simulation and prediction of process changes’ impact on performance before real-
world implementation.

The rest of the paper is organized as follows. Section [2] presents background
knowledge. Section [ presents a conceptual architecture for implementing Digital
Process Twins. Section[d]introduces the DOLLY framework supporting the Digital
Process Twin conceptual architecture in practice. Section[5|reports on the DOLLY
evaluation. Finally, Section [6] discusses related works, and Section [7] summarizes
and concludes the paper.
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2 Background

This section overviews the most relevant aspects of deploying the Digital Process
Twin. First, we introduce MERODE, a model-driven method used to support
the design of digital models for Digital Process Twin. Additionally, we discuss
the Business Process Simulation technique, which is fundamental for conducting
“what-if” analyses and estimating business process performance.

2.1 The MERODE Methodology

Adopting a Model-Driven Engineering approach in developing Digital Twins is
fundamental to fully leverage their potential [19/24]. A noteworthy approach
within this domain is the MERODE methodology [31]. MERODE uses object-
oriented domain modeling to develop enterprise information systems, structuring
the design and implementation of intra-organizational enterprise information
systems into three distinct layers: the Domain layer, the Information System
Services layer, and the Business Process layer |31].

The Domain layer defines business objects, including their attributes and rela-
tionships. A business object represents a real-world entity relevant to a business
process, such as data, documents, people, events, or other elements participating
in a business process [16]|. Examples of business objects could include Container
and Shipment, which can be instantiated to link a container with a specific
shipment. Additionally, a Sensor equipped on each container constantly mon-
itors and tracks data in real-time, providing comprehensive information about
the shipment’s status and conditions. The domain layer enables code genera-
tion from a conceptual model named “MERODE Domain Model”, facilitating
the transition to a functional prototype of the information system [30}/31]. The
MERODE Domain Model consists of three views: a Class Diagram, an Object
Event Table, and a set of Finite State Machines. The class diagram defines busi-
ness objects and their relationships, while the object event table maps event
types triggered by business objects. When an event fires, it triggers the exe-
cution of methods on business objects used to create, modify, or end business
object instances. Finite state machines specify the life cycles of business objects,
depicting object behavior triggered by events. A MERODE Domain model can
be modeled using the MERLIN Modeling Tooﬂ providing model consistency
and correctness assessment features.

The Information System Services layer acts as a bridge between business
objects and business processes. Input services update the business objects by
modifying their attributes or state, while output services provide access to data.

The Business Process layer sits above the Information System Services layer.
Its purpose is to facilitate interactions between processes and the Domain layer
via Information System Services, ensuring the update and exchange of informa-
tion with business objects.

4 https://www.merlin-academic.com/
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2.2 Data-Driven Business Process Simulation

Traditional Business Process Simulations allow business experts to estimate the
performance of business processes under varying conditions and constraints |1.
To run a simulation, a Simulation Model is required. This model digitally repli-
cates real-world processes, including detailed mappings of process flows, activi-
ties, decision points, and resources. In addition, it necessitates a set of Simula-
tion Parameters that represent quantitative variables such as activity processing
times and costs used to ensure that the Simulation Model accurately reflects
real-world conditions [1}/28]. However, the manual creation and fine-tuning of
Business Simulation Models is an error-prone task, involving a complex set of
models and parameters defined and assessed manually by business experts. This
approach often leads to inaccurate models and requires significant time to iden-
tify the optimal scenario for desired performance outcomes [6}[14].

Data-driven process simulation offers a solution by leveraging real data to
discover accurate and enhanced simulation-ready models [6}[14]. Unlike tradi-
tional process simulations, which rely on manually gathered and interpreted
information, data-driven simulations utilize historical and real-time data from
event logs. Mining techniques based on past event logs of the process [6}23] are
employed to ensure that simulation-ready models and parameters are reason-
able and aligned with reality |1]. Historical data provide retrospective insights
through process mining techniques, while real-time data enable continuous up-
dates to the simulation model, ensuring it accurately reflects the current state
of the process during the simulation [14].

Once the simulation model is configured, it is ready to be simulated, and
results can be interpreted. To this end, Key Performance Indicators (KPIs) are
crucial for evaluating the performance and effectiveness of business processes.
KPIs are values for measuring the effectiveness in achieving specific goals of
a business process [1|. They include metrics such as cycle time distribution,
waiting time distribution, cost distribution, and resource utilization, providing
benchmarks for evaluating overall process performance. By assessing the KPIs,
the what-if questions mentioned above can be answered, and different process
redesigns can be compared.

3 Conceptualizing Digital Twins

Implementing a Digital Twin infrastructure is a non-trivial task [19}/26]. Despite
the emergence of various implementations from both research and practical ap-
plications [17}/26], no single solution can be considered a silver bullet for imple-
menting a full-fledged Digital Twin [19]. A Digital Twin environment typically
includes a collection of interconnected models and data that replicate a real-
world system [19]. It provides services, including design, development, analysis,
simulation, and optimization, enabling a thorough understanding and enhance-
ment of the replicated system’s performance [17,/19].
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3.1 A Conceptual Architecture for Digital Twin

In [17], the authors explored various characterizations of the core elements of
Digital Twins. This effort was directed at providing a clearer understanding of
the foundational components of Digital Twins. They proposed a generic and con-
ceptual architecture for facilitating the systematic engineering of new domain-
independent Digital Twin applications. According to [17], a Digital Twin adheres
to a three-component architecture described as a three-element tuple:

Apr = (Actual System, Models, Data)

Where the Actual System represent a real-world system or object; Models
provide digital representations of the Actual System; and Data represents current
and historical data of the Actual System, crucial for instantiating digital models.
The three main components of the architecture are described in the follows.

— The Actual System refers to the real-world system that the Digital Twin
aims to replicate. It involves collecting, storing, calculating, and inferring
data specific to the system. These activities are essential for the Digital
Twin to capture relevant aspects, features, and relationships of the Actual
System within its operational contexts and environments.

— The Data component is about storing and representing current and histor-
ical data from the Actual System. Data and information are important to
accurately provides information to models and reflect the actual system in
the digital space of the Digital Twin environment, enabling accurate and fair
analysis.

— The Models establish digital representations of the Actual System consid-
ering different perspectives. As stated by [17], it includes three types of mod-
els: descriptive, predictive, and prescriptive. Descriptive models capture and
organize data to accurately replicate the Actual System. Predictive models
support decision-making using aggregated data and insights from descriptive
models to anticipate future system behavior and conduct “what-if” analyses.
Finally, Prescriptive models incorporate insights from “what-if” analyses into
adaptive actions aimed at optimizing the Actual System.

3.2 A Conceptual Architecture for Digital Process Twin

Digital Process Twins have recently been acknowledged as crucial enablers for
digital transformation within organizational processes |4L{15,/18]. However, there
is still a lack of comprehensive implementations to effectively leverage the Digital
Process Twins paradigm. In the following, we propose a conceptual architectural
approach tailored for the engineering and deployment of Digital Process Twins,
drawing upon the conceptualization outlined in the previous Subsection. Figure
[T] depicts a visual representation of the proposed conceptual architecture.

The Actual System here refers to a business process, which consists of
actions, events, and decisions that lead to creating a service or product |16].
Typically, business processes encompass various perspectives, which the authors
in 27| categorize into six distinct perspectives described in the following.
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Fig. 1: The Conceptual Architecture for Digital Process Twin.

— Function Perspective: atomic activities representing specific business tasks
within the process.

— Behavior Perspective: dynamic behavior including control flow, activity
order, and constraints.

— Information Perspective: data used/generated in the process, organized
via domain models (class diagrams, finite state machines).

— Organization Perspective: roles of participants and organizational units,
ensuring proper task assignment.

— Operation Perspective: implementation details and integration with ap-
plication services, supporting business functions.

— Time Perspective: temporal constraints like deadlines and durations, en-
suring timely execution.

Process-Aware Information Systems integrate and manage these business
processes by incorporating the aforementioned perspectives, facilitating control,
monitoring, and analysis [27]. The information generated by these systems pro-
vide valuable information and data on various aspects of the process. These
systems generate valuable information, including historical data stored in event
logs and real-time data on ongoing process instances, which offer essential infor-
mation for creating a digital process replica.

The Data component entails collecting and storing process-relevant data di-
rectly from the process and the Process-Aware Information System. Data are
organized through Digital Shadows, which are abstracted and aggregated data
structures that provide a one-way data flow from the Actual System to its digital
representation [3}25]. Information is transmitted to the Digital Shadow to es-
tablish a synchronous linkage between the Actual System and its corresponding
Digital Process Twin. Data is fundamental for two reasons: first, it instantiates
digital models that accurately replicate the Actual System; second, by populat-
ing these models, it enables detailed analyses that provide insights and drive
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improvements in the Actual System. The data flow, represented in Figure
by the “Monitoring/Mining” arrow, illustrates two methods of data collection:
real-time monitoring of ongoing business process instances and historical data
extraction using Process Mining techniques [2]. Real-time data includes infor-
mation about the current status of the process (i.e., resource usage, active tasks,
actual process KPIs). Historical data, including event logs of past process execu-
tions, organizational documents outlining procedures, and additional contextual
data, provides valuable information for Process Mining analyses [2].

Considering the Model component, descriptive models aim to create a digi-
tal replica of the process [17]. Therefore, the first step is defining a model able to
properly represent the actual business process embedding the six typical perspec-
tives of business processes described below. Ensuring the quality of the process
model is crucial, because it enables precise monitoring, analysis, and optimiza-
tion of business processes, leading to improved efficiency, predictive maintenance,
and informed decision-making [16}/35]. In this context, Business Process Model
and Notation (BPMN) stands out as the most common and effective standard
for designing a business process model for organizations [10,[11]. A BPMN dia-
gram details the sequence of activities, control rules, and interactions between
process participants, providing a clear and comprehensive representation of the
entire process. It represents specific behaviors, functions, operations, organiza-
tional and time perspectives of the process. The model of the process is obtained
by adopting process mining discovery algorithms [2]|, which analyze event logs
from the Process-Aware Information System to ensure the model is accurate
and reflects reality. In parallel, the domain data model manages the information
perspective, organizing and structuring data relevant to the process. This in-
cludes class diagrams and finite state machines that define the relationships and
states of business objects, ensuring data integrity and supporting the retrieval
of process-related information.

To conduct what-if analyses, a predictive model representing the digital
replica of the actual business process is employed. However, to implement and
test new process changes, business experts must manually adjust the process
structure (i.e., reordering tasks and adding new resources). For this reason, the
digital replica should be modified by (i) manually implementing the necessary
changes to the process model; (ii) discovering optimal Simulation Parameters
using existing mining approaches on historical data [623]; (iii) leveraging real-
time data from a Domain Model [27]. This enables the creation of a data-driven
process simulation model, allowing for the virtual implementation of changes
and the estimation of the new process’s performance through simulation. Fi-
nally, simulation insights can be translated into the form of Prescriptive Models.
They consist of estimating KPIs and analyzing event logs to reason about the
impact of changes made to the process. These insights are translated into ac-
tions, evaluated by business experts, and, if beneficial, implemented in the actual
business process. To complete the feedback loop between the Digital Twin and
the Actual System, the “Actuating” arrow involves implementing and executing
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actions on the Actual System based on prescriptive models. This approach helps
reduce costs, save time, and provide a risk-free environment for virtual testing.

4 DoLrLy: A Framework for Implementing Digital Process
Twins

This section introduces DOLLY, a framework based on the Digital Process Twin
conceptual architecture proposed in Subsection [3.2] It adopts a multi-modeling
approach, integrating domain data models formalized with the MERODE method-
ology, the standard BPMN language for process modeling, and data-driven sim-
ulation techniques for what-if process analysis. Figure [2] provides an overview
of DoLLY, highlighting its three key components: the Actual System, Data, and
Models.

DOLLY Framework

Digital Process Twin Environment

ﬁ/[odels
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Planning ~ .
ANMIE |- Process Simulation Model

BPMN (P1?) Descriptive Models
_ - MERODE Domain Model;
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- Real-Time Data.
New! New!
Planning
T
(oa%
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N
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Information System

Fig. 2: DoLLy: Framework Overview.

To create a digital copy of the Actual Process (P1), DoLLY allows to lever-
age data from the Process-Aware Information System that implements the ac-
tual business process. The Data extracted includes real-time information from
ongoing process instances via an embedded Camunda Engine, as well as his-
torical data obtained by uploading an event log representing previous process
executions. The event log is used to discover the structure of the actual BPMN
process model (P1) through Process Mining techniques . On the other hand,
Real-time data are used to instantiate the MERODE Domain Model. In ,
the authors demonstrate how MERODE bridges the gap between data and pro-
cess modeling by linking these two domains formally. It allows the handling of
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domain process data by continuously monitoring business objects’ status, rela-
tionships, actions, and actual process KPIs. This enables real-time management
of their data, providing current status information within the process. Moreover,
MERODE supports formal verification, reusability, and flexibility [31], creating
descriptive models that reflect business processes from multiple perspectives.

Then, to evaluate the impact of potential process changes, a new BPMN
model (P1’) is derived by modifying the digital counterpart PI of the actual pro-
cess. Unlike P1, the P1’ model necessitate additional features. First, it includes
manual changes applied by business experts, implementing the desired changes
to the process. Additionally, to effectively run simulations, P1’ requires defining
simulation parameters. These parameters are discovered using SimuBridge 23],
which allows mining techniques to be performed on historical process data, ensur-
ing that simulations are based on real information. Furthermore, P1’ integrates
real-time data from the MERODE Domain Model, aligning domain data with
the current state of the ongoing process instance. This real-time data is essential
for maintaining the accuracy and relevance of the simulations. By simulating
P1’, which acts as a predictive model, it is possible to conduct “what-if” analysis
within the Digital Process Twin, allowing for the evaluation of potential changes
and providing valuable insights into their impact before real-world implemen-
tation. To run simulations on BPMN models, DoLLY embedded BIMP UI, a
business process simulator. This integration allows users to simulate business
processes effectively, leveraging a user-friendly interface to visualize, analyze,
and download simulation results.

Business experts then evaluate the impact of the changes on process perfor-
mance by carefully analyzing the simulation results. If the performance improves
or remains unchanged, the changes suggested by the prescriptive models can be
considered for implementation. If performance does not improve, P1’ is revised
and tested again. This iterative approach enables continuous process adjustments
based on real-time data, simulation feedback, and desired process changes.

5 Framework Evaluation

This section presents a real-world implementation of DOLLY in a smart har-
bor scenario. The objective is to evaluate the framework’s capabilities. A smart
harbor represents a technologically advanced port that leverages innovative tech-
nologies and data-driven solutions to enhance operational efficiency [29]. This
scenario focuses on an loT-enabled business process that represents modern pro-
cesses designed for automation through IoT integration. While smart harbors
encompass various processes, we will focus on container dispatching.

5.1 The Container Dispatch Business Process

Context. The process starts with the arrival of a cargo container at the har-
bor and ends when it is loaded onto a cargo ship, indicating that it’s ready for
shipment. The containers involved in dispatching are equipped with IoT devices
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(i.e., RFID sensors) to track their status during the dispatching. When contain-
ers reach the harbor, their information (i.e., IoT data and shipping documents)
is recorded in the system and transmitted to the Storage Area. Then, it is re-
located to the Control Area for quality inspection. Quality control is conducted
by cross-referencing the container’s arrival data with the information gathered
during manual quality inspection. If the container fails the quality test, a man-
ual inspection is conducted to address potential quality issues, and the container
is then returned to the Storage Area. Once quality problems are resolved, the
container is moved to the Shipping Area and loaded onto the cargo ship.
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container to container to: container to
Storage Area Shipping Area Ship
Container ready

Qualty? for the Shipment

10T Data
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(a) Discovered Actual Business Process (P1).
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Worker 2: 30€/hr - 24/7 System Registration: 5 mins - Fixed Instances Arrival Time: 1 Container/hr :
Worker 3: 25€/hr - 24/7 - Solving Quality Problems: 1 hour - Fixed Work schedules: 24/7 i

(b) Mined Simulation Parameters.

D NOT OK
L \

IoT Data

Conlamer Move the Move the
registration in container to container to: Quality Check
the system Storage Area Shipping Area
Container arrival

(c) Adapted Scenario Implementing Changes (P1’).

Move the
container to
Control Area

Resolve
Quality
Problems

Move the
container to:
Ship

Container ready
for the Shipment

Quality?

Fig. 3: Simulation Parameters and Models of the Container Dispatch Process.

Process Data. The event logs were generated considering two primary data
sources: (i) logs from the smart harbor system, which contains the sequences of
activities performed for each process instance and trace attributes, and (ii) IoT
sensor data, which tracks the arrival and quality of the containers considering
temperature and humidity. The process event logs were generated using CDLG
20|, a tool specifically designed to create synthetic event logs integrating concept
drifts and noise, such as missing event data. Event logs are based on patterns and
data observed in real-life operations from the Tuscan Port Community System
ﬂ The event log comprises 7 activities, 3 resources, 33,910 events related to 5000
cases, and 67 execution paths (process variants).

5 https:/tpcs.tpcs.eu/
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5.2 Use Case Instantiation

Actual Business Process. As a first step, we employed the inductive miner
process mining algorithm to discover the actual business process PI from the
event log, applying a threshold to mitigate noise. The process structure has been
slightly adapted to better align with real-world operations. Figure|3aldepicts the
process model discovered (P1). Automated tasks are designated as service tasks,
while the manual task of resolving quality problems is identified as a manual task.
Additionally, a data object has been incorporated to represent IoT data utilized
during container registration and quality check activities. The initial container
registration in the system involves capturing this IoT data, which is crucial for
subsequent quality assessments. Analysis of the structure of the event log and
the derived process is provided through a python notebookﬂ

MERODE Domain Model. In 12|, we utilized a MERODE Domain Model to
develop a Digital Twin for manufacturing applications. Building on this, we have
implemented the domain model within DOLLY to generate Prescriptive Models
for implementing Digital Process Twins.

After discovering the actual process, the MERODE Domain Model is instan-
tiated and mapped to the business objects participating. For example, creating
instances of the Dewice class allows real-time retrieval of data, status, and ac-
tions from physical devices. These digital models, formed by class diagrams,
finite state machines and object event tables, are dynamically synchronized with
business objects at the business process level, capturing real-time and histori-
cal data. Each business object is “tracked” by these models, and every action
it performs is updated both in the process and in the domain model instances.
This ensures that both real-time and past data produced by business objects
can be retrieved for analysis. A representation of the MERODE Domain Model
is shown in Figure[d] Further details on the specification and instantiation of the
MERODE IoT Domain Model are available online [7]

Data-Driven Process Simulation. At this stage, we assumed the involve-
ment of business experts to introduce changes to the actual process. For this
use case, we address the question: How can we modify the process to reduce total
costs and cycle time while maintaining the same operational efficiency?

Using bpmn.io, a BPMN modeler embedded in DOLLY, changes were manu-
ally applied to the digital process replica (P1), resulting in an adapted version,
P1’. This adaptation aimed to simplify the workflow, reduce costs, and shorten
the process cycle time. In P1’, the container is moved to the Control Area only if
it fails the quality check, eliminating unnecessary movements. Figure [3c| depicts
the adapted version of the process P1".

The event log was then used to discover the optimal simulation parameters for
the process simulation model P!’ using SimuBridge [23|. SimuBridge integrates
components such as control flow, activity duration, and resource utilization by

S https://dub.sh/BPDiscovery- ipynb
" nttps://github.com/IvanComp/Dolly/blob/main/README . md
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analyzing a .xzes event log file. It leverages the Simod mining algorithm 7 which
enhances accuracy to derive models and simulation parameters from event logs.
The simulation parameters mined are as follows: Worker 1 handles container sys-
tem registration and quality checks, earning €20 per hour; Worker 2 manages
container movements, earning €30 per hour; Worker 3 performs manual quality
inspections, earning €25 per hour. Figure [3D]shows these parameters, with each
task differentiated by shapes and colors based on the resource associated. For
all workers, a 24/7 working timetable was considered. Activities have varying
durations: the container quality check takes 1 hour while recording and checking
container data in the system takes 5 minutes. To better reflect reality, container
movements follow a uniform time distribution, varying between 25 and 35 min-
utes. Containers have an 84% chance of passing the quality test, as required
by the XOR gateway for outgoing sequence flows (84% OK, 16% NOT OK).
Additionally, a fixed distribution time is assigned to each instance’s arrival.
Finally, we simulated P1’ using BIMP UlI, a scalable and fast BPMN simula-
tor and compared the KPIs derived from P! and P1’. As motivated by the Digital
Process Twin architecture, we employed a hybrid approach integrating mined op-
timal simulation parameters, real-time data from the MERODE Domain Model,
and manual changes to the actual process PI. This method continuously updates
and reflects the process model, resulting in a data-driven simulation model P1".

Results Evaluation. Table [I] presents the KPIs for PI and P1’. The KPIs
are categorized into cycle time distribution, cost distribution, and resource uti-
lization. In terms of cycle time distribution, P1’ shows significant improvements
with reduced minimum, maximum, and average cycle times, indicating a more ef-
ficient process. Regarding cost distribution, P’ showed cost savings, with lower
minimum, maximum, and average costs, and a significantly reduced total cost,
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Legend: | Reduction, T Increase. — Hrs: Hours, Wks: Weekends.

T Original Scenario (P1) Adapted Scenario (P1’)
Min. Max. Avg. Total Min. Max. Avg. Total
Cycle Time Distr. 3.7 Hrs 15.6 Hrs 11.7 Hrs 12.6 Wks 1.5 Hrs | 9.2 Hrs | 5 Hrs | 12.4 Wks |
Cost Distr. € 68.20 € 110.40 € 80.10 € 40,054.20 | € 40.40 | € 93.70 | € 53.50] € 26,767.50 |
Worker 1 Worker 2 Worker 3 Total Worker 1 Worker 2 Worker 3 Total
Resource Utiliz. 58.75% 2.00% 3.44% 64.19% 37.54% | 1.98% | 3.92% 1 43.44% |

Table 1: KPIs of the Simulation for PI and P1’.

indicating better time efficiency and cost-effectiveness. In resource utilization,
P1’ shows mixed results. Workers 1 and 2 have significantly improved utiliza-
tion, while Worker 3’s workload increases. A graphical comparison between the
KPIs values of P! and P1’ is shown in Figure [5| and available onlindﬂ The
P1 and P1I’ versions of the simulation models, the SimuBridge project file and
the simulation results are available online |21ﬂ The DoLLY source code and
instructions for running are available onlind'%]

Cycle Time Distribution Cost Distribution Resource Utilization
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Fig. 5: Comparison of the KPIs for P1 and P1".

6 Related Work

The concept of Digital Twin has been extensively explored across various do-
mains and purposes |19}/24]. Significant research has focused on implementing
Digital Twins in industrial sectors, particularly in replicating and simulating
machines and devices used in manufacturing processes [3,241[26].

Despite the growing interest, only a limited number of research works focus on
implementing Digital Process Twins. For instance, [34] proposes a micro-service

8 https://bit.1ly/Dolly_AnalisysResults_ipynb
9 https://zenodo.org/records/12671621
10 https://github.com/IvanComp/Dolly
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architecture to integrate physical IoT entities into IoT-Enhanced Business Pro-
cesses. This approach uses a model-driven development method that combines
BPMN models and Digital Twins Definition Language models via Java micro-
services, allowing IoT virtual replicas to be integrated into real-world processes.
However, it lacks capabilities for continuous optimization and adaptation of IoT-
Enhanced Business Processes. Similarly, PROWIN [13] is a framework designed
for monitoring and executing IoT-Enhanced Business Processes in a multi-robot
scenario. It uses the Gazebo Simulator for 3D visualization of the operating
scenario and the process’s evolution, offering a detailed view of the system’s ex-
ecution. Nonetheless, it does not address the specifics of the software infrastruc-
ture needed for maintaining runtime synchronization with the real world. In [5],
authors present a framework for managing IoT-Enhanced Business Processes.
This solution extends the BPMN standard and integrates models for analysis,
featuring a model-to-text transformation engine, an interaction broker for IoT
infrastructure, a simulation engine, and a business process engine. However, it
lacks detailed real-time communication with physical counterparts.

This work advances the state of the art by proposing a novel conceptual
architecture for deploying Digital Process Twins. It outlines a procedure for
creating, managing, and simulating digital replicas of business processes to assess
potential changes before real-world implementation. Additionally, we introduce
DoLLy, a prototype framework that allows to implementation of the proposed
Digital Process Twin conceptual architecture.

7 Conclusion

In this paper, we moved a first step in introducing a novel conceptual architec-
ture for deploying Digital Process Twins to enhance resilient process changes
and support informed decision-making through predictive insights derived from
data-driven process simulations. The architecture integrates heterogeneous digi-
tal models (e.g., descriptive, predictive, and prescriptive) to design, synchronize,
and simulate a high-fidelity digital replica of business processes, leveraging data
extracted from real-time business object monitoring and process mining analysis.

The conceptual architecture promotes a feedback loop mechanism that uti-
lizes data-driven process simulation on the process replica to continuously assess
the potential impacts of desired process changes. If process performance improves
or remains stable, these changes are considered to be actuated by business ex-
perts in the real-world process. Moreover, conducting tests on digital replicas en-
ables secure, risk-free evaluation of changes, thereby reducing deployment costs
and accelerating process updates. The approach was evaluated using DOLLY, an
early-prototype framework implementing the proposed Digital Process Twins ar-
chitecture in the context of a container dispatching process, revealing significant
improvements.

In future research, we aim to improve further DOLLY, currently in its proto-
type stage, focusing on performance in high data volume environments, such as
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typical IoT settings. We also plan to test DOLLY in more complex and larger-
scale scenarios for more accurate and realistic evaluation.
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