Experimenting Architectural Patterns
in Federated Learning Systems

Ivan Compagnucci®, Riccardo Pinciroli®, Catia Trubiani®

®Gran Sasso Science Institute, L’Aquila, 67100, Italy
b Zimmer Biomet, Milan, 20054, Italy

Abstract

Federated Learning has emerged as a promising paradigm that enables col-
laborative model training while preserving data privacy, thus contributing
to enhance user trust. However, the design of Federated Learning systems
requires non-trivial architectural choices to address several challenges, such
as system efficiency and learning accuracy. Architectural patterns for Fed-
erated Learning systems have been defined in the literature to handle these
challenges, but their experimentation is limited. The objective of this paper
is to empower software architects in their task of evaluating the design of FL
systems while deciding which architectural alternatives are more beneficial
in their context of adoption. Our methodology consists of a tool-based ap-
proach that embeds the implementation of six architectural patterns defined
in the literature. The advantage is that software architects can select design
alternatives either in isolation or in a combined fashion, and the subsequent
analysis provides the evaluation of some metrics of interest. The experimen-
tal results indicate that architectural patterns can enhance system efficiency,
although we found a combination of patterns that added overhead and turned
to limit its benefit. By quantifying these trade-offs, we aim to support soft-
ware architects in designing Federated Learning systems by evaluating the
benefits and drawbacks of applying architectural patterns.

Keywords: Architectural Patterns, Federated Learning, Quantitative
Evaluation

1. Introduction

Modern digital devices generate massive volumes of data that grow ex-
ponentially and contribute to feed advanced Machine Learning (ML) tech-
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niques [25]. Data represents a crucial aspect in this context, since several
factors play a key role during learning, e.g., data representativeness directly
influences predictive performance [3]. With the increasing reliance of ML on
sensitive information, data privacy has become a critical concern [28]. Conse-
quently, software solutions must ensure both trustworthiness and compliance
with legal requirements, such as the European General Data Protection Reg-
ulation (GDPR) [22]. To face these challenges, in 2016 Google introduced
Federated Learning (FL), i.e., a paradigm that enables devices to collabora-
tively train a shared global model while keeping sensitive data locally [44].
This approach has rapidly emerged as a practical and effective solution to
handle data privacy and enhance user trust [73, 57], fostering its adoption
across several domains, from healthcare to mobile applications [29]. However,
recent studies argue that designing FL systems is still challenging [5]. For
instance, the optimization of system performance emerges as a relevant con-
cern, as FL systems must balance data protection, communication efficiency,
optimal resource management, and model accuracy [70].

State-of-the-art research on FL primarily focuses on optimizing learning
algorithms [45, 37|, model compression [76, 58|, and parameters’ aggregation
strategies [52, 27]. The system performance is instead handled by a few ap-
proaches [33, 14], even if it is well assessed that system performance problems
may hurt the functioning [29], especially in real-world deployments aiming
at guaranteeing system efficiency along with reliability and user trust [73].
In this context, the design of FL systems represents the primary abstraction
that contributes to the subsequent development choices, the architectural de-
cisions become of key importance since they constitute the foundations of the
FL process [41, 33]. Besides, architectural inefficiencies may lead to training
failures and resource depletion, potentially undermining the trustworthiness
properties that FL aims to ensure [29, 73]. To address these challenges, in
the literature there is a recent effort of adopting architectural patterns specif-
ically perceived for FL systems [41]. In software engineering, architectural
patterns represent reusable solutions to a problem that occurs commonly
within a given context in software design [7]. The benefit of relying on the
specification of patterns is that they provide a pool of design alternatives
that may represent valid options for software architects [41].

The overarching research question we address in this paper is: What is the
quantitative impact of applying different design alternatives on FL systems?
We propose an approach that evaluates the behavior of FL systems, thereby
supporting software architects in taking informed design decisions.



In our previous work [18], we presented a quantitative evaluation of ar-
chitectural patterns for FL systems using Flower [9], i.e., a Python library
for FL. By extending its codebase, we implemented and evaluated four archi-
tectural patterns from [41]: the Client Registry, which provides a centralized
storage of client data enabling efficient management, the Client Selector,
which reduces training round time by intelligently filtering clients, the Client
Cluster, which improves both training time and model accuracy by group-
ing clients based on data similarities, and the Message Compressor, which
optimizes communication overhead while balancing compression costs.

The objective of our research is to support software architects in under-
standing the impact of design alternatives on FL systems. To this end, we
propose AP4FED, a benchmark framework that enables the selection and the
combination of six architectural patterns. The outcome of the analysis con-
sists of reports that estimate some metrics of interest, specifically we target
the following two main indicators: (i) system performance, that represents
the computational overhead generated by the FL process, and (ii) predictive
performance, that refers to the learned model accuracy. In this paper, two
novel architectural patterns are implemented and evaluated: (i) Heteroge-
neous Data Handler, which aims to improve the quality of datasets owned
by clients participating in the FL process; (i1) Multi-Task Model Trainer,
which is designed to train separated but related ML tasks simultaneously.
In addition, we experiment with the combination of previously defined pat-
terns [18] with the newly introduced ones, specifically: (i) Heterogeneous Data
Handler is combined with Message Compressor, thus studying the joint opti-
mization of data quality and communication efficiency; (i7) Multi- Task Model
Trainer is combined with Client Selector, thus investigating the joint effort
of optimizing model accuracy and system efficiency. Summarizing, the main
contributions of this manuscript are:

1. The development of AP4FED [19], i.e., a tool that supports software
architects in experimenting different design decisions through the se-
lection and combination of six architectural patterns;

2. The implementation of two architectural patterns and their experimen-
tation either in isolation or in combination with other patterns, while
measuring system performance and predictive performance;



3. Empirical results showcase benefits and drawbacks of architectural pat-
terns, thus providing quantitative evidence that supports software ar-
chitects in understanding pattern(s) trade-offs.

The rest of the manuscript is organized as follows. Section 2 provides
background knowledge on FL systems and architectural patterns. Section 3
describes the methodology and the framework used for the experiments. Sec-
tion 4 reports the analysis of architectural patterns, both in isolation and in a
combined fashion. Section 5 argues on the obtained experimental results and
their implications. Section 6 discusses related work and highlights the main
differences with our research. Section 7 concludes the paper by outlining the
main contributions and directions for future research.

2. Background
2.1. Federated Learning

Federated Learning (FL) emerged as a solution to the growing challenge
of utilizing a large amount of sensitive and personal data [44, 41]. While
this data is invaluable for training ML models capable of improving decision-
making in software systems [70], its sensitive nature raises significant privacy
concerns when shared with centralized servers [4]. To address this, FL enables
multiple client devices to collaboratively train a global ML model using their
local data under the coordination of a central server [41, 4, 70]. This dis-
tributed system allows to preserve data privacy and distributing computation
across a network, FL not only addresses privacy concerns but also enhances
scalability and reduces reliance on centralized processing resources [29)].

Figure 1 depicts the main phases of the FL paradigm. It begins with a
central server broadcasting the initial global model parameters (e.g., model
weights and structure) to all participating clients (D. Once all clients receive
these parameters, each device performs local model training using its private
data 2. Upon completing the training, clients send their updated model
parameters (i.e., the trained model weights) back to the central server (3.
The server then aggregates these updates to produce a refined version of
the global model @). The updated global model is subsequently redistributed
to the clients, initiating the next round of training. The process repeats
iteratively, with the global model continuously improving until convergence
is achieved. This mechanism ensures collaborative learning while preserving
data privacy, as data remains decentralized throughout the process.
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Figure 1: Federated Learning Overview, inspired by [41].

2.2. Architectural Patterns in Federated Learning Systems

Architectural patterns provide reusable solutions to recurring design chal-
lenges in complex systems [55]. They represent best practices in design, en-
abling developers and software architects to address concerns such as scala-
bility and modularity while preserving system efficiency [41]. In our previous
work [18], we implemented and evaluated a subset of architectural alterna-
tives defined by Lo et al. [41], specifically: the (i) Client Registry that stores
information on clients contributing to the training; (i¢) the Client Selector
that improves the system efficiency by selecting clients based on some pre-
ferred criteria, e.g., more computational power; (iii) the Client Cluster that
enhances the training efficiency by grouping clients based on their similari-
ties; (iv) the Message Compressor that increases communication efficiency
by reducing the message data size.

In this work, we keep focusing on quantitatively evaluating FL systems,
and investigate two additional architectural patterns that are considered es-
sential for enhancing system efficiency [41]. The first pattern, namely Hetero-
geneous Data Handler, performs pre-processing operations on local datasets
to enhance data quality across all clients participating in the FL process.
The second pattern, i.e., the so-called Multi- Task Model Trainer, enables the
simultaneous training of multiple ML tasks. These two patterns are detailed
in the following.

2.2.1. Heterogeneous Data Handler Architectural Pattern
Context. The Heterogeneous Data Handler pattern aims to improve the
quality of datasets owned by clients participating in the FL process. This
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Figure 2: Heterogeneous Data Handler Pattern Overview.

architectural alternative consists of employing techniques such as: (i) data
augmentation, which creates synthetic data to increase the diversity and vol-
ume of local datasets, and (ii) federated distillation, that periodically provides
knowledge from other devices to clients (without directly accessing other de-
vices’ data) [41]. These techniques help balance data distributions across
clients while preserving local data privacy and avoiding the need for central-
ized data collection [70]. The primary benefit of the Heterogeneous Data
Handler pattern lies in its ability to enhance the generalization and accuracy
of the global model by improving the quality of client datasets [41]. Through
techniques like Generative Adversarial Networks (GANs), the architectural
alternative consists of addressing challenges related to the imbalanced nature
of the non-Independent and Identically Distributed (non-I1ID) dataset [3§]
by generating synthetic examples that increase diversity and fill gaps in un-
derrepresented classes. This leads to a more effective training process and
reduces reliance on uniform data distributions. However, this design alter-
native may introduce computational overhead from performing local opera-
tions, as well as privacy concerns since dataset analysis is required during
augmentation and knowledge transfer.

Our Implementation. To implement the Heterogeneous Data Handler pat-
tern, we leverage the PyTorchGAN [49] Python library, exploiting its capa-
bilities to augment data through synthetic sample generation and thereby
mitigating the imbalance of clients local non-1ID datasets. Specifically, we
employ a conditional GAN model trained to produce class-specific data sam-
ples, effectively augmenting underrepresented classes in each client dataset.
The Heterogeneous Data Handler pattern is integrated by first analyzing
the class distribution of each client dataset, and then generating synthetic
data to balance class proportions. After applying GAN-based augmentation,



updated datasets exhibit reduced class imbalance, enabling more effective
training of the global model. Results show that this approach mitigates chal-
lenges posed by non-IID data while preserving local data privacy.

2.2.2. Multi- Task Model Trainer Architectural Pattern
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Figure 3: Multi-Task Model Trainer Pattern Overview.

Context. The Multi-Task Model Trainer pattern is designed to train
separated but related ML tasks [41]. A ML task is a defined problem that a
system addresses by identifying similarities and relationships from data [72].
It encompasses the model objective, the type of predictions or decisions it
needs to make, and the structure of the data it processes. Examples may
include image classification, speech recognition or time series forecasting |2,
72]. As shown in Figure 3, this architectural alternative consists of enabling
scenarios where clients share data to train two ML tasks, T; and T,. These
tasks can subsequently result in two possible outcomes: (i) the generation of
two distinct global models, which we will refer to as My and My, or (i7) the
combination of tasks into a single unified global model, referred to as Mz [41].
Mz is designed to tackle both tasks simultaneously by leveraging shared data,
ensuring the model effectively achieves the objective of both tasks.

Challenges of statistical heterogeneity in FL systems, particularly when
dealing with non-IID data across clients, often lead to poor model generaliza-
tion and thereby lower accuracy [29, 60]. By considering additional clients
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with relevant data for a specific task, this design alternative can partially
mitigate the non-IID data problem by providing additional samples, thereby
enhancing the global model accuracy. To better illustrate this approach, con-
sider the example depicted in Figure 4, which shows a robot performing two
interconnected computer vision tasks, i.e., the semantic segmentation and
the depth estimation. Semantic segmentation allows the robot to identify
and classify objects within its environment [56], while depth estimation de-
termines the distance and spatial structure of the surrounding area [30]. By
combining semantic segmentation and depth estimation, the robot enhances
its ability to navigate and interact with the environment more precisely. The
multi-task learning approach builds upon shared knowledge, thus the global
model can adapt to heterogeneous data across clients [41, 60].

M, ’ M,
U-Net a DenseU-Net

Real-World

Depth Estimation

Figure 4: The Multi-Task Model Trainer Pattern in the Robot Use Case.

Our Implementation. To implement the Multi-Task Model Trainer pat-
tern, we design a FL simulation capable of simultaneously training multiple
tasks by leveraging both shared and task-specific data. The training process
is organized as follows: each client performs local updates for both T; and
T, by computing gradients and weights independently for each task. These
updates are then aggregated at the server level where a single unified model
(M3) is generated. To achieve this, AP4FED extends the Flower standard
configure_fit! method, which is responsible for configuring the upcoming
training round [9]. AP4FED incorporates a strategy that dynamically directs
the updated weights provided by clients to the corresponding task during the

'Further  details are available at https://flower.ai/docs/framework/
how-to-implement-strategies.html
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training process. This ensures that each client’s local training data effectively
contributes to the global model for its respective task(s). After completing
their local training, clients send to the server their updated weights, which
are then aggregated using a weighted averaging mechanism based on the
number of samples processed by each client.

3. Methodology

Introduction. Our methodology consists of developing AP4FED, a flex-
ible FL. benchmark framework that enables software architects to design,
configure, and evaluate FL systems through the composition of mixed ar-
chitectural patterns, enabling quantitative evaluation of their impact. The
open source code and the documentation on how to use the developed tool
is publicly available [19].
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Figure 5: AP4FED Infrastructure Overview.

The AP4FED infrastructure, depicted in Figure 5, builds on the Flower
Python library (v1.12.0) [9], a framework designed to support the configu-
ration and simulation of FL systems. Flower provides core functionalities
such as client-server communication, global model updates, and round-based
coordination, which serve as the foundation for AP4FED. Beyond these
core features, AP4FED introduces a set of architectural patterns and met-
rics to benchmarking FL simulations. These additions enable the extraction
of advanced metrics and provide greater flexibility for configuring and eval-
uating diverse FL scenarios. The framework leverage the PyTorch library
(v2.5.0) [50] for ML tasks, allowing each client to perform local training on
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Figure 6: BPMN Graphical Representation of the AP4FED Framework.

its data. APAFED uses PyQt5 (v5.15.11) to provide a user-friendly Graphi-
cal User Interface (GUI) that simplifies the process of configuring simulation
parameters and modeling FL systems for experimentation. This interface
guides users through the setup process, thus enabling the emulation of typi-
cal real-world FL architectures.

Methods. Figure 6 presents a BPMN diagram [17] that illustrates how
AP4FED works. Its core workflow is split into three phases.

The O Project Setup phase enables users to either start a new FL simula-
tion or load an existing configuration from a JSON file. In the former case, the
simulation can be configured to run in a local environment (to experiment
with different ML strategies and algorithms) or in a container-based setup
(to emulate real-world systems, ensure efficient resource allocation, and pre-
vent resource overcommitment [16]). In the latter one, users can customize
predefined settings defined in the JSON file.

The second phase of the AP4FED workflow is @) System Configuration.
Figure 6 shows that the configuration involves three main tasks: (i) system
parameters, (ii) client details, and (iii) architectural patterns. Figure 7 re-
ports the configuration GUI of AP4FED, specifically: system parameters
(e.g., the number of rounds), see Figure 7a; client details (e.g., number of
allocated CPUs), see Figure 7b; architectural patterns (e.g., the client selec-
tor requires a selection strategy), see Figure 7c. A graphical overview of all
parameters is presented in Figure 7d.

Table 1 summarizes the parameters in a tabular format. The system pa-
rameters are: the simulation_Type that can be Local or Docker, the number
of FL rounds (num Rounds) that can vary between 1 and r, and the num-
ber of clients (nC) whose minimum value is 2 and the maximum can be set
to ¢. Each client is detailed with an identifier (client_ID), the resource
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Figure 7: AP4FED: Simulation Configuration GUI.

11



Parameter Description Possible Value
System Parameters
simulation_Type Type of FL Simulation “Local”, “Docker”
num_Rounds no. of FL Rounds 1, r
nC no. of Clients 2, ¢
Client Details
client_ID Incremental Client ID 1,...,¢c
n_CPU no. of allocated CPUs 1,n
RAM Allocated Memory Capacity 1,m
dataset Testing Dataset “CIFAR-107, ...
data Distribution Data Distribution Type “IID”, “non-I1ID”, “Random”

Architectural Patterns

@ CLIENT REGISTRY
enabled

@ CLIENT SELECTOR
enabled
selection_strategy
selection_criteria
criteria_value

@ CLIENT CLUSTER
enabled
clustering strategy
clustering criteria

@ MESSAGE COMPRESSOR
enabled

S MULTI-TASK MODEL TRAINER
enabled
M1
M1_dataset
M2
M2_dataset

S HETEROGENEOUS DATA HANDLER
enabled

It stores relevant client data

Activation “True”

It selects clients based on criteria

(De)Activation “True”, “False”
Setup the selection strategy “Resource-based”
Setup the selection criteria “CPU”, “RAM”
Setup the threshold value “1,n”, “1,m”
It groups clients according to similar data

(De)Activation “True”, “False”
Setup the clustering strategy “Data-based”
Setup the clustering criteria “Data Distribution Type”
It compress Clients-Server exchanged data

(De)Activation “True”, “False”
It trains multiple tasks simultaneously

(De)Activation “True”, “False”
Setup the first model “U-Net”, ...
Setup the dataset of the first model “CIFAR-107, ...
Setup the second model “DenseU-Net”, ...
Setup the dataset of the second model “NYUv2”, ...
It generates synthetic data to balance dataset classes

(De)Activation “True”, “False”

Table 1: System Configuration Parameters Summary ( ® : Architectural Pattern).
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allocation (i.e., n_CPU, RAM), the testing dataset, e.g., CIFAR-10, and the
data Distribution type that can be IID, non-IID, or random. The architec-
tural patterns present the following settings. The CLIENT REGISTRY pattern
is always enabled since it provides key client data on which other patterns rely
on. The CLIENT SELECTOR pattern, when activated, requires the following
settings: selection_strategy (e.g., Resource-based), selection criteria
(e.g., CPU), and criteria_value (e.g., >1). For instance, only clients with
more than one CPU resource are selected, whereas all others are excluded.
The CLIENT CLUSTER pattern, when enabled, necessitates these settings:
clustering strategy (e.g., Data-based), and clustering criteria (e.g.,
Data Distribution Type). For example, clients are clustered via their data
type. The MESSAGE COMPRESSOR pattern, when activated, reduces communi-
cation costs by compressing data exchanged between clients and server. The
MULTI-TASK MODEL TRAINER pattern, when enabled, needs the specification
of both the model architectures M1 and M2 (e.g., U-Net) and the correspond-
ing datasets M1_dataset and M2_dataset (e.g., CIFAR-10). For instance, two
datasets are used for training, both in isolation than in combination. The
HETEROGENEQUS DATA HANDLER pattern, when activated, generates synthetic
data that balance the representativeness of classes in the datasets. We recall
that these parameters are set by users and they feed the JSON configuration
file, see a concrete example in Listing 1. This way, users can download the
entire configuration as a JSON file, that can later be uploaded when creating
a new FL project, thereby enabling easy reuse of previously defined setups.

The @) Simulation phase allows to run the simulation and collect results.
AP4FED embeds a prompt that provides an overview of the simulation, de-
tailing aspects such as the training time or other information on implemented
patterns, as shown in Figure 8a. This offers a detailed explanation of the
current state of the simulation, aiding the reasoning of the ongoing process.
Upon completion, the tool generates a set of summary plots, as shown in
Figure 8b, and it offers the option to download a complete report of the
simulation in a CSV format.

{

SYSTEM_PARAMETERS: [

{

simulation_Type: "Docker",
num_Rounds: 100,
nC: 10,

b,
]
CLIENT_DETAILS: [

{

13



}

]

]

client_id: 1,
n_CPU: 2,

RAM: 2,

dataset: "FMNIST",

data_Distribution: "IID"

5

{
client_id: 2,
n_CPU: 1,
RAM: 2,
dataset: "CIFAR-10",

data_Distribution: "non-IID"

}

ARCHITECTURAL_PATTERNS: [

client_registry: {
enabled: "true",

élient_selector: {
enabled: "true",
selection_strategy:

"Resource -based",

selection_criteria: "CPU",
criteria_value: ">1"
}s
client_cluster: {
enabled: "true'",
clustering_strategy: "Data-based",
clustering_criteria: "IID"
}s
message_compressor: {
enabled: "true"
t,

multi_task_model_trainer:

M1: "U-Net",

{

M1_dataset: "CIFAR-10",

M2: "DenseU-Net",
M2_dataset: "NYUv2"

}s

heterogeneous_data_handler: {

enabled: "true"

}

Listing 1: Example of a JSON Configuration File for AP4FED.

Results. Table 2 provides the description of the implemented evaluation
metrics, building on approaches proposed in the literature [27, 56, 30]. Those
metrics are selected to capture system performance and predictive perfor-
mance variations, thus providing insights for different architectural choices.
System performance metrics are collected at different granularity levels. The
training time and the communication time are calculated for each client. The
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(a) Prompt of the Simulation. (b) Dashboard of the Simulation.
Figure 8: AP4FED: Simulation GUI.
Target Parameter Description
Training Time Time Spent on Local Training
Svstem Communication Time Time Spent on Client-Server Communication
P}érformance Total Round Time Total Time Spent for each FL. Round
CPU Utilization Percentage of Time the CPU is Utilized
RAM Utilization Percentage of Time the RAM is Utilized
Validation Loss Global Model’s Error on Validation Data
Predictive Validation Accuracy Correct Predictions on Validation Data
Performance F1 Score F1 Score of the Global Model
MAE Mean Absolute Error

Table 2: AP4FED Evaluation Metrics.

total round time instead represents the time required to complete one round
considering all the participating clients. Regarding resource utilization, the
tool monitors two key metrics for federated learning [61, 1]: the Central Pro-
cessing Unit (CPU) usage and Random Access Memory (RAM) consumption.
We also evaluate the predictive performance metrics, following standard ad-
vices from the literature [27, 30, 56]. For classification problems, we derive
the F1 score to balance precision and recall, while for regression tasks, we
employ the Mean Absolute Error (MAE) to quantify the prediction accuracy.

Discussion. The outcome of our methodology consists of a report that
captures a set of evaluation metrics from simulations. The produced report
is aimed to collect knowledge on the FL system under analysis, along with
information on the different architectural alternatives and their quantitative
impact. We think this knowledge may represent a precious support for soft-
ware architects that are in charge of comparing different design alternatives,
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and deriving insights for improving the system performance and the pre-
dictive performance. This way, our quantitative evaluation can be used by
software architects to take informed architectural decisions.

4. Experiments

4.1. Ezxperiments Configuration

In this subsection, we describe the experimental setup used to evaluate the
proposed architectural patterns, including the Heterogeneous Data Handler
Pattern, the Multi-task Model Trainer one, and the use of combined patterns.
We outline the system configuration, datasets, and the structure of the global
models employed in our analysis. The goal is to assess the impact of these
design alternatives on system performance and predictive performance.

Subject Systems. To fairly evaluate experiment output metrics, we report
mean results obtained over 10 iterations, along with a 99% confidence inter-
val, represented using lines and shaded areas in the plots. Each experiment
is conducted using different ML models tailored to the specific ML task un-
der evaluation. A Convolutional Neural Network (CNN) is employed as the
global model for image classification tasks. For semantic segmentation, a
U-Net architecture was utilized, leveraging its well-established effectiveness
in capturing fine-grained spatial details. In the case of depth estimation, the
DenseU-Net [30] is adopted to exploit feature reuse and enhance depth pre-
diction accuracy. For training global models, we use the CIFAR-10 [32] and
NYUv2 [47] datasets. The CIFAR-10 dataset consists of 60,000 32 x 32 color
images, with 50,000 images for training and 10, 000 for testing, divided into
10 distinct classes. Each class includes images of objects or animals (e.g.,
trucks, dogs), providing a challenging task for the CNN to accurately clas-
sify test images into one of the 10 categories. The NYUv2 dataset consists of
1,449 480 x 640 different images captured from a variety of indoor environ-
ments. As depicted in Figure 9, the dataset comprises three types of data:
1,449 RGB images, 1,449 depth maps, and 1,449 .npy files. The RGB image
in Figure 9a capture the visual details of a scene, while the corresponding
depth map in Figure 9b reveal spatial information by encoding the distance
of surfaces from the camera perspective. The .npy file stores 2D arrays, with
each value representing a specific object class (e.g., 0 for background, 1 for
table, etc.) that corresponds to a pixel in the RGB image. This information
is visually represented in Figure 9c.
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(a) RGB Image. (b) Depth Map. (c) Labeled Image.

Figure 9: Random Samples of the NYUv2 Datasets.

Hardware Setup. Experiments are conducted using a workstation machine
with an Intel Xeon W5-2445 featuring a 20 Core CPU @3.1GHz and 64GB of
RAM alongside an NVIDIA RTX A4500 GPU. Note that, AP4FED first checks
if a Compute Unified Device Architecture (CUDA) GPU [36] is available, and
if not, it automatically uses the CPU. Using Docker Compose, resources such
as processing units (i.e., CPU cores) and RAM can be manually allocated to
each container, enabling flexible experiment setups tailored to specific needs.
This setup enables the emulation of heterogeneous clients, incorporating vari-
ations in the dataset distribution and clients specifications, to evaluate the
impact of different configurations on the system performance and the predic-
tive performance. Notably, the maximum number of concurrently running
containers is constrained by the host machine’s capacity (i.e., 10 cores) to
avoid CPU overcommitment. This limitation is essential, as surpassing the
processing limits of the host can result in resource contention, potentially
invalidating the replicability and validity of experimental results [16].

4.2. Quantitative Evaluation of Architectural Patterns

In this subsection, we present the configurations and results of the ex-
perimental analysis conducted to evaluate the two newly implemented archi-
tectural patterns. Then, we report the experimental results from combining
these architectural alternatives together in two distinct configurations to as-
sess their impact on system and predictive performance.

4.2.1. Analysis of the Heterogeneous Data Handler Pattern
Table 3 presents input parameters used for the Heterogeneous Data Han-
dler Pattern experiment. The experiment is repeated for 10 iterations, and

result metrics are then averaged. The setup involves 10 rounds of FL with
1 server and 8 clients with 1 CPU and 2GB of RAM. To quantitatively
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Parameter Value

simulation_Type Docker

num_Rounds 10

nC 8

n_CPU 1

RAM 2GB

dataset CIFAR-10
Training Samples 50,000 — 25,000
Data Handler Technique Data Augmentation
Data Augmentation Strategy GAN

GAN Library PyTorchGAN [49]

Table 3: Input Parameters for Heterogeneous Data Handler Experiments.

evaluate this pattern, we use the Dirichlet distribution [69] to partition
non-IID datasets for some clients?. This method, widely used in FL exper-
iments [38, 68], allows for emulating varied data distributions, replicating
the data heterogeneity commonly observed in real-world scenarios [29]. For
completeness, we report the Dirichlet distribution formula:

1 k
p(xl,xz, . ?xk’> — m Hl,?ifl
1=1

The Dirichlet distribution’s probability density function, p(z1, xa, ..., zk)
is normalized by the beta function B(«), ensuring the total probability equals
one. The parameters o = (g, g, ..., ax) control the level of classes imbal-
ance, while the term Hle 227" reflects the non-uniform distribution across
variables. Here o defines the degree of unbalance, allowing adjustments to
test different levels of data non-uniformity in the partitioning. To accom-
modate the CIFAR-10 dataset’s limit of 5,000 samples per class (across 10
classes), the number of training examples is reduced from 50,000 to 25,000
enabling a different allocation of non-IID data. This way, we assign a differ-
ent number of samples across classes to each client while ensuring that the
total number of samples remains equal across all clients, allowing for compa-
rable experiment configurations. For instance, in IID clients, each class in the
CIFAR-10 dataset has 2,500 training examples, while non-IID clients exhibit
imbalanced distributions, such as 500 examples for cat and 4, 500 for truck,
ensuring the total number of training examples remains consistent across

’https://flower.ai/docs/datasets/ref-api/flwr_datasets.partitioner.
DirichletPartitioner.html
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clusters. The characteristics of the global model used in the experiment are
reported in Figure 10. The CNN architecture, described in Figure 10a, con-
sists of two convolutional layers (Conv! and Conv2) with ReLU activations,
followed by max-pooling (Pooll and Pool2) layers. Conv! has 6 filters (55
kernel), and Conv2 has 16 filters (55 kernel). The model then transitions to
three fully connected (FC) layers: FC1 (120 units), FC2 (84 units), and a
FC3 (10 units). Training uses a batch size of 32, a learning rate of 0.001,
and SGD with 0.9 momentum. The graphical representation of the model is
displayed in Figure 10b.

Parameter Value

Dataset CIFAR-10

Training Samples 50000

Test Samples 10000

Model Type Convolutional Neural Network

Model Structure  Convl: 6 filters, 525 kernel
Pooll: Max pooling, 222 kernel
Conv2: 16 filters, 5xb kernel
Pool2: Max pooling, 2x2 kernel
FC1: 120 units
FC2: 84 units
FC3: 10 units

Batch Size 32
Learning Rate 0.001
Optimizer SGD (momentum = 0.9)
(a) Global Model Parameters. (b) Global Model Architecture.

Figure 10: Overview of the CNN Used in the Experiment.

The Heterogeneous Data Handler architectural pattern is implemented
following the data augmentation strategy [41] based on Generative Adversar-
ial Networks (GANs). GANs, introduced by Goodfellow et al. [24], operate
through a competitive process between two neural networks: a generator,
which creates synthetic data samples mimicking real data, and a discrimina-
tor, which aims to distinguish between generated and real samples. Figure 11
depicts the general use of a GAN.

Through adversarial training, the generator creates synthetic data from
the real dataset while the discriminator evaluates authenticity. The GAN
is considered well-trained when the discriminator can no longer differentiate
between real and synthetic data, enabling high-quality synthetic data gen-
eration [24]. For instance, considering a facial images dataset, a GAN can
produce variations by altering features like hair color or expression while
maintaining core identity traits. This capability makes GANs especially use-
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Figure 11: GAN Applications.

ful for addressing dataset imbalances, as they can generate high-quality ex-
amples for underrepresented classes. In FL contexts, GANs are recognized
as an effective solution for non-IID data challenges, generating additional
samples to reduce disparities among clients’ local datasets [26, 2]. The effec-
tiveness of GANs for data augmentation is well-documented [2], with success-
ful implementations across various domains including image generation [13],
image-to-image translation [75], and Natural Language Processing [71].

As reported in Table 4, we evaluate the Heterogeneous Data Handler pat-
tern through four different experiment configurations labeled A, B, C', and D.
In each configuration, we consider 8 Clients and 1 Server. In Config. A
all clients use datasets with an IID data distribution, while in Config. B,
clients are configured with datasets following a non-I1D data distribution. In
Config. C' 4 clients use IID datasets and the other 4 use non-IID datasets.
Similarly, Config. D also consists of 4 clients with IID datasets and 4 with
non-I1D datasets. However, in Config. D, the Heterogeneous Data Handler
pattern is applied to the set of non-IID clients, adjusting their data distribu-
tion to closely resemble that of IID clients. Figure 12 highlights the impact of
the Heterogeneous Data Handler pattern in effectively augmenting the non-
ITD clients datasets, showing the transition of the class distribution from a
non-IID to an IID configuration.

Figure 13 shows the results of this experiment. Figure 13a depicts the F1
Score of each global model across the FL rounds. Config. A and Config. D,
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Table 4: Experiment Configurations for Multi-Task Model Trainer.

Config. A Config. B Config. C Config. D

> Heterogeneous Data Handler X X X v
no. of IID Clients 8 - 4 438
no. of non-IID Clients - 8 4 4 -0

Total Clients 8 8 8 8

X: Without Heterogeneous Data Handler pattern; v : With Heterogeneous Data Handler pattern.

Before GAN Dataset Augmentation After GAN Dataset Augmentation

Client 8

Client 7

Client 6

Client 5

Client 4

Client 3

Client 2

Client 1

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Class Distribution (%) Class Distribution (%)

Class
BN Airplane N Automobile [ Bird Cat Deer Dog Frog 00 Horse B Ship B Truck

Figure 12: Client Dataset Partition Before and After applying GAN in Config. D.
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Figure 13: Analysis of the Heterogeneous Data Handler Pattern.
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which both perform the FL process without clients using non-1ID datasets,
exhibit similar trends. However, Config. A shows faster convergence, reaching
a higher F1 Score earlier in the process. Config. B and Config. C', which in-
clude clients with non-11D datasets, show notably lower F'1 Scores, indicating
reduced model accuracy and slower convergence. Among these, Config. B,
composed exclusively of clients with non-IID datasets, performs significantly
worse. Notably, its F1 Score even declines during some rounds, dropping
from 0.13 to 0.11 between rounds 8 and 9, highlighting the negative impact of
non-IID data on the global model accuracy. Figure 13b presents the average
total round time during FL rounds. The configurations involving clients with
non-1ID datasets (i.e., Config. B and Config. C') show longer and less stable
average round times, as reflected by the wider confidence intervals derived
from 10 experiment iterations. Notably, Config. B, which consists exclusively
of clients with non-IID datasets, records the longest average round times,
ranging between 700 and 800 seconds per FL round, making it the most time-
consuming configuration analyzed. This highlights the significant impact of
data non-IIDness on the duration of FL rounds. This aligns with practition-
ers’ expectations, confirming that training times can increase when rounds
include clients with non-I1ID data [38, 68]. Figure 13c depicts the ratio of F1
Score to the average total round time that we define as efficiency, thereby
capturing the trade-off between predictive performance and system perfor-
mance. Results indicate that configurations involving clients with non-I11D
datasets exhibit substantially lower efficiency, underscoring challenges asso-
ciated with heterogeneous data distributions [41]. In contrast, configurations
composed only by IID clients (Config. A) or employing the Heterogeneous
Data Handler (Config. D) achieve higher efficiency, pointing out the positive
impact of balanced data distributions and tailored handling strategies.

Architectural Implications. Software architects can consider this archi-
tectural pattern when dealing with a relevant number of clients that exhibit
non-IID dataset characteristics. Experimental results demonstrate that ap-
plying GANs [24] technique to clients participating in the FL rounds improve
model accuracy by balancing heterogeneous data distributions.

4.2.2. Analysis of the Multi-Task Model Trainer Pattern

Table 5 reports input parameters used for the Multi-Task Model Trainer
Pattern experiment. Output metrics are evaluated by considering the average
values over the 10 simulation iterations. The setup includes 10 FL rounds,
with a single server and 4 clients collaborating for each training task, each
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Parameter Value

simulation_Type Docker

num_Rounds 10

nC 4 for Each Task (T1,T2)
n_CPU 1

RAM 2 GB

dataset NYUv2

T1_-TASK Semantic Segmentation
To_TASK Depth Estimation

Table 5: Input Parameters for Multi-Task Model Trainer Experiments.

equipped with 1 CPU and 2GB of RAM. To quantitatively evaluate this
pattern, we use the NYUv2 dataset, focusing on two distinct ML tasks la-
beled T, and T,. Figure 14 illustrates how these tasks are implemented in
practice. Semantic segmentation (Ty) classifies each pixel into one of 40 pre-
defined object classes (e.g., 0 for background, 1 for table, etc.), with distinct
colors denoting different objects, as shown in Figure 14a. Similarly, depth
estimation (T,) predicts the distance of objects from the camera, generating
a per-pixel depth map that enhances spatial perception, as shown in Fig-
ure 14b. Figure 15 presents the architectural characteristics of both global
models used in our experiments. For T;, we employ a U-Net architecture
with an encoder-decoder structure. The parameters of the model are de-
picted in Table 15a and the graphical structure is shown in Figure 15b. The
encoder features three blocks of double 3 x 3 convolutions with increasing
filters (32, 64, 128), while the decoder mirrors this structure with decreas-
ing filters (128, 64, 32). A 256-filter bottleneck connects these components,
concluding with a 40 filters and a 1 x 1 convolution layer. For T,, we imple-
ment a DenseU-Net architecture characterized by dense connectivity. The
parameters of the model are depicted in Table 15¢ and the graphical struc-
ture is shown in Figure 15d. Its encoder combines three dense blocks (64,
128, 256 filters) with transition layers (128, 256, 512 filters), connected to
the decoder through a 512-filter bottleneck. The decoder reduces filters from
512 to 128 via transition layers and dense blocks (256, 128, 64 filters), ending
with a 1 x 1 convolution. Both models are trained with a batch size of 2 and
learning rate of 0.001, using AdamW optimizer for U-Net and SGD with 0.9
momentum for DenseU-Net.

As reported in Table 6, we evaluate the Multi-Task Model Trainer Pattern
considering 3 different configurations. In each configuration, we maintain a
set of 4 clients for training the related ML task. Note that, Configurations M;
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Figure 14: Sample of an RGB Image overlapped with Labeled and Depth Images.

250

(a) Overlap of RGB and Labeled Images (T1). (b) Overlap of RGB and Depth Images (T2).

Parameter Value

Dataset NYUv2
Training Samples 1150 RGB Images
1150 Labeled Images

Test Samples 299 RGB Images
299 Labeled Images
Model Type U-Net with Encoder and Decoder

Model Structure  Encoder: [32 — 64 — 128] filters x 2, 3x3 kernel
Bottleneck: 256 filters x 2, 3x3 kernel
Decoder: [128 — 64 — 32] filters x 2, 3x3 kernel
Final: 40 filters, 1x1 kernel

Batch Size 2
Learning Rate 0.001
Optimizer AdamW

(a) Global Model Parameters of the U-Net (M;).

Parameter Value

Dataset NYUv2
Training Samples 1150 RGB Images
1150 Depth Maps

Test Samples 299 RGB Images
299 Depth Maps
Model Type DenseU-Net with Encoder and Decoder

Model Structure  Encoder: Dense blocks [64 — 128 — 256] x 2 layers
Transition Down: [128 — 256 — 512] filters
Bottleneck: 512 x 2 layers
Transition Up: [512 — 256 — 128] filters
Decoder: Dense blocks [256 — 128 — 64] x 2 layers
Final: 1 filter, 1x1 kernel

Batch Size 2
Learning Rate 0.001
Optimizer SGD (momentum = 0.9)

(c) Global Model Parameters of the DenseU-Net (Mz).  (d) Architecture of the DenseU-Net Model (Mp).

Figure 15: Global Models Used in the Multi-Task Model Trainer Experiments.
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Config. M; Config. M, Config. M

& Multi-Task Model Trainer X X v
no. of Clients for T, 4 (2 1ID, 2 non-1ID) - 4 (2 IID, 2 non-IID)
no. of Clients for Ty, - 4 (2 1ID, 2 non-1ID) 4 (2 IID, 2 non-IID)
Total Clients 4 — M 4 — M, 4+4 — M,
Samples Distribution
RGB Images 724 724 1449
Labeled Images - 724 1449
Depth Maps 724 - 1449

X: Without Multi-Task Model Trainer pattern; v : With Multi-Task Model Trainer pattern.

Table 6: Experiment Configurations for Multi-Task Model Trainer.

and M, each involve four clients collaborating to train their respective global
models, M; and M. In the configuration M3, every client participates in each
task through sharing data, thereby enabling the simultaneous training of a
unified global model Ms.

Figure 16 depicts the results of the experiments. For each configuration,
we conduct a comparative analysis of the three models: M; and M, compared
against Mz. When referring to Ms, we evaluate both Ty and T, independently,
as these represent distinct evaluation scenarios. Figure 16a shows the average
client training time required to complete an FL round for model M; and Ms.
The clients of M; participating in the training complete their FL rounds in
147 seconds on average, achieving a reduction of approximately 5.7 seconds
per training round compared to Mz. In Figure 16b we compare the average
training time of M, and Mz, and again we observe that M, completes training
rounds more efficiently, with an average of 162.1 seconds compared to 163.5
seconds for M, achieving a reduction of approximately 1.4 seconds per train-
ing round. Considering the global model accuracy, Figure 16¢ depicts the F1
Score comparison between M; and Mz, where M3 shows a consistent improve-
ment in predictive performance, reaching higher F1 scores (0.35) compared
to My (0.32) by the final FL round. Figure 16d depicts the MAE compari-
son between My and Mz, where M3 demonstrates lower error rates, stabilizing
around 0.16 compared to M, higher MAE of 0.18. Then, we consider accuracy
and average training time to derive an efficiency metric. For M;, we evaluate
the ratio between F1 Score and average training time, multiplied by 100 to
obtain a percentage efficiency score. For M,, since both MAE and training
time are metrics where lower values indicate better efficiency, we calculate
their product. These metrics are defined as:
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Figure 16: Analysis of the Multi-Task Model Trainer Pattern.
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F1 Score
Avg. Training Time

1
Efficiency My = ( ) x 100 Efficiency My = ( ) x 100

MAE x Avg. Training Time

The value of such ratios are shown in Figure 16e and Figure 16f, where
we can notice that the best trade-off between accuracy and efficiency (i.e.,
in term of reducing training time) is achieved when the multi-Task Model
Trainer pattern is implemented (Config. M) in both ML tasks. This improve-
ment is particularly evident in M, where despite a minimal difference in
training time, the pattern achieves better accuracy. For M;, while the differ-
ence in training time is slightly more evident, applying the pattern still shows
higher accuracy throughout the FL rounds.

Figure 17 compares
different configurations
by reporting their av- = Config. My~ Config. M, —— Config. Ms
erage CPU utilization.
The configuration with
the Multi-Task Model %
Trainer pattern (Con-
fig. M3) shows a higher
average CPU usage com-
pared to M; and M,
reflecting the increased

40

Average CPU Usage (%)

computational demand 25 R X wee
due to the simultane- ol
ous management of mul- ro2os 45 6 7 8 9 10

Federated Learning Round

tiple tasks. Specifically,
M; average CPU usage
is approximately 44%,
whereas the average uti-
lization of M; and M, is lower, i.e., approximately 23% and 27%, respectively.

Architectural Implications. Software architects may benefit from adopt-
ing this pattern when clients possess datasets containing features relevant to
multiple ML tasks. The pattern key advantage emerges when clients partic-
ipate in training multiple global models simultaneously, i.e., their local data
can contribute to improving the accuracy of all involved models by leveraging
shared data across ML tasks. However, the larger accuracy is achieved at
the cost of increasing the utilization of hardware resources.

Figure 17: Average CPU Usage per FL Round.
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4.3. Combining Architectural Patterns

This section explores the combination of multiple patterns to study if this
may yield additional benefits or unexpected drawbacks compared to their
isolated use. This way, we investigate how these design alternatives interact
when combined, thus supporting software architects to make informed deci-
sions about system design and leverage potential synergies [41, 29]. In the
following, we report the most interesting interactions we found, specifically
the Multi-Task Model Trainer and Heterogeneous Data Handler patterns
combined with two patterns from our previous work [18], i.e., the Client
Selector and the Message Compressor.

4.3.1. Heterogeneous Data Handler and Message Compressor.

Table 7 reports our investigation on comparing another combination of
architectural patterns, i.e., Heterogeneous Data Handler and Message Com-
pressor: the baseline configuration (Config. A) implements Heterogeneous
Data Handler with a mixed client pool (4 IID and 4 non-IID clients), while
the combined configuration integrates both the Heterogeneous Data Handler
and Message Compressor patterns. The latter combination integrates data
augmentation through GAN-based generation with data compression tech-
niques for client-server communication. The Heterogeneous Data Handler
uses GANs to generate synthetic data to balance non-I11D datasets, while the
Message Compressor aims to reduce the communication overhead by com-
pressing model parameters exchanged between clients and server.

Rationale. The combination is meant to reduce communication overhead
while handling non-IID data distributions. However, this approach can intro-
duce significant computational overhead, as the system needs to handle both
the resource-intensive GAN operations and the additional compression/de-
compression processes. This is interesting since the increased total round
time may lead to outweigh benefits.

Experiment. Figure 18 depicts the results of the experiment. Figure 18a
shows the F'1 Score progression across FL rounds. Config. A maintains slightly
better accuracy throughout the FL rounds, reaching a final F1 Score of
0.25 compared to 0.24 of the combined configuration. This suggests that
the compression process may introduce a small degradation in model accu-
racy [29]. Figure 18b presents the total round time per FL round. While both
configurations follow similar patterns, the combined approach shows a higher
total round time, averaging about 500 seconds per round versus 490 seconds
for Config. A. Figure 18c depicts the ratio between F1 Score and total round
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Config. A Config. Combined

> Message Compressor X v

- Compression Library - 2lib [20]
(S Heterogeneous Data Handler v 4
no. of IID Clients 4 4
no. of non-IID Clients 4 4
Total Clients 8 8

X:Without Architectural Pattern; v : With Architectural Pattern.

Table 7: Combined Configuration Comparison: Client Selector and Heterogeneous Data
Handler.

time. Config. A shows better efficiency across all rounds, indicating that the
additional computational overhead from combining the Message Compressor
with the Heterogeneous Data Handler outweighs any potential benefits in
communication efficiency. We think that this experimental result is relevant,
since it makes evident that it is not always beneficial to combine architec-
tural patterns, there exist some interactions that do not lead to advantages,
thus confirming the usefulness of a tool-based approach that quantifies the
impact of different design alternatives.

4.8.2. Client Selector and Multi- Task Model Trainer

Table 8 shows our intent to compare two distinct architectural choices:
the baseline configuration (Config. Mz) implements the Multi-Task Model
Trainer pattern only with a mixed client pool ( 4 clients per task: 2 with
[ID and 2 with non-I1ID data). The combined configuration applies both the
Client Selector and the Multi-Task Model Trainer, filtering participants to
select only those with IID data distributions while preserving the concurrent
multi-task training capability.

Config. M3 Config. Combined

® Client Selector X v

- Selection Strategy - Data-Based

- Selection Criteria - IID Dataset
Q Multi-Task Model Trainer v v
no. of Clients for Ty 4 (2 IID, 2 non-1ID) 4 — 2 (21ID)
no. of Clients for T 4 (2 IID, 2 non-IID) 4 — 2 (21ID)
Total Clients 4+4 — M3 4 — M3

X:Without Architectural Pattern; v :With Architectural Pattern.

Table 8: Combined Configuration Comparison: Client Selector and Multi-Task Model
Trainer.
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Figure 18: Analysis of the Heterogeneous Data Handler Pattern combined with the Mes-
sage Compressor.
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Rationale. The combination of the Client Selector and the Multi-Task
Model Trainer patterns aims to support multi-task learning by ensuring that
selected clients hold well-distributed data across all classes. This combination
assumes that clients with IID data provide more stable and reliable contribu-
tions across multiple learning tasks, potentially leading to better convergence
in the multi-task training process.

Ezxperiment. Figure 19 shows the results comparing two architectural
choices: (i) the baseline configuration (Mz) implementing only the Multi-Task
Model Trainer with a heterogeneous client pool (2 IID and 2 non-I1ID), and
(47) a combined configuration that integrates the Client Selector pattern with
the baseline, which systematically filters participants to retain only those
with IID data characteristics. Figures 19a and 19b report the average train-
ing time per FL round for both tasks T; and T,. The combined configuration
with Client Selector shows consistently lower training times compared to
the baseline Config. Mz, particularly for T; where the reduction is more pro-
nounced. Figure 19c depicts the F1 Score evolution across FL rounds, with
the combined configuration achieving higher model convergence. Figure 19d
shows the MAE progression, where lower values indicate better predictive
performance. Both configurations show decreasing error rates as training
progresses, with the combined configuration showing better predictive per-
formance in later rounds. Figures 19e and 19f present efficiency metrics com-
bining accuracy (F1 Score for Ty, MAE for T,) over training time. It is worth
remarking that the combined configuration achieves a higher efficiency in
both tasks, thus assessing the positive impact of combining these patterns.

5. Discussion

5.1. Analysis of Architectural Patterns

Heterogeneous Data Handler. Tt makes use of GAN-based data augmen-
tation to enhance local client datasets, improving global model accuracy
and reducing average round time [41]. Balancing datasets with high-quality
synthetic samples mitigates the effects of non-IID data, reducing gradient
variance and accelerating convergence [41]. In addition, as practitioners
note [41, 18], training on non-I1ID datasets can significantly extend the train-
ing phase duration and overall FL round time. Our experiment confirms both
these assumptions. Configurations with non-IID clients (Config. B and C)
demonstrate reduced global model accuracy and slower convergence, charac-
terized by longer and inconsistent round times. In contrast, the Heteroge-
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neous Data Handler (Config. D) mitigates these challenges through GAN-
based data augmentation, balancing local datasets and accelerating conver-
gence [41]. However, this design alternative introduces substantial computa-
tional overhead due to the time required for training the GAN. The process of
generating and validating synthetic data demands significant computational
resources, while potentially revealing sensitive information about client data
distributions that could compromise the client privacy.

Multi-Task Model Trainer. It provides the capability to train global mod-
els that can handle different yet related tasks simultaneously [41]. In our
implementation, clients participate in both classification (T;) and regression
(T,) tasks, demonstrating that shared data characteristics contribute to im-
proved predictive performance for both global models while keeping training
time reasonable. Although training global models separately may lead to
a slightly shorter training time, employing the Multi-Task Model Trainer
pattern results in higher accuracy for both models. This is due to the Multi-
Task Learning approach that allows the model to learn shared representations
across different but related tasks [41]. When data distributions among clients
are skewed, a single global model struggles to capture unique data patterns,
especially with non-IID data [38, 68]. By incorporating clients with simi-
lar data characteristics, the global model can learn from a broader dataset,
providing more samples for underrepresented classes and mitigating class im-
balance. However, the Multi-Task Model Trainer pattern leads to a higher
consumption of hardware resources. As shown in Figure 17, the configuration
where this pattern is enabled (Config. Mz) exhibits significantly higher CPU
usage (i.e., 44% on average) than other configurations without this patterns
(i.e., My and My, whose CPU utilization is 23% and 27% on average, respec-
tively). This increase reflects the additional computational demand required
to concurrently manage and aggregate training results from multiple tasks.
Moreover, model portability is more complex, as each client may use a model
tailored to its specific task. A robust and reliable implementation must care-
fully manage the aggregation of different model weights in the server [41].

5.2. Combining Multiple Architectural Patterns

Heterogeneous Data Handler and Message Compressor. The integration
of the Heterogeneous Data Handler and the Message Compressor is initially
conceived to improve system efficiency by enhancing data quality and reduc-
ing the communication time. However, from combining these patterns, we
learn that the overall system efficiency may decrease. Experimental results

34



show lower efficiency compared to when the Heterogeneous Data Handler is
implemented in isolation. The additional processing time from data compres-
sion and the decreasing global model accuracy appear to offset advantages
gained through improved data quality. The system performance degradation
observed when combining the Heterogeneous Data Handler with the Mes-
sage Compressor can be attributed to the pipeline of sequential data trans-
formation they introduce. GAN-based data augmentation operations, which
are computationally intensive, may introduce significant system bottlenecks
when followed by compression procedures. This experience points out the
reason why the combination of design alternatives requires some cautious.
The synthetic data generated to balance class distributions is subsequently
compressed, potentially degrading the statistical properties established dur-
ing augmentation. This double transformation introduces information loss
that negatively impacts the model accuracy. Software architects should care-
fully evaluate combinations of data-processing patterns, as their cumulative
effects can distort data characteristics, resulting in reduced model accuracy
rather than improved system performance.

Client Selector and Multi- Task Model Trainer. Combining Client Selector
with Multi-Task Model Trainer shows a successful synergy offering improved
efficiency and enhanced model accuracy. By filtering out non-IID clients, the
Client Selector reduces noise during gradient aggregation, leading to faster
convergence, while the Multi-Task Model Trainer effectively leverages shared
data across tasks. While using fewer total clients, the combined configura-
tion achieves a slightly higher accuracy with significantly reduced training
time. The impact of this combination stems from two complementary factors.
First, the Client Selector eliminates clients with non-II1D data, which typically
have unbalanced datasets and slow down model convergence and learning.
Second, the Multi-Task Model Trainer leverages shared data across tasks,
thereby enriching the training set with additional data that may be missing
in individual clients. This synergy not only reduces the computational over-
head by limiting non-IID clients, it also enhances training effectiveness by
ensuring a more balanced and comprehensive data distribution.

5.3. Integration with existing MLOps techniques

Machine Learning Operations (MLOps) is defined in the literature as a
paradigm including a variegate set of aspects, such as best practices, con-
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cepts, and development culture, that contribute to the implementation, mon-
itoring, deployment, and scalability of machine learning products [31].

MLOps tools are reviewed by Recupito et al. [54] that highlight some
important features of interest. For instance, our approach is aligned with
the so-called predictive performance monitoring feature, since it raises the
need to control the model’s predictive performance. Two further features that
align with our research are: (i) open source, which ensures the software code is
publicly accessible for use, modification, and distribution; and (ii) scalability,
which highlights the importance of monitoring the system performance to
support reliable continuous delivery.

MLOps pipelines are reviewed by Eken et al. [21] who foresee automation
as a crucial aspect in ML systems. Tasks such as data collection, model
building, deployment, and monitoring should be automated to minimize the
need of human intervention. Pipeline management is recognized as a complex
process, involving multiple triggers to initiate task execution. For example,
training may be triggered when the predictive performance of a model de-
clines [21]. This highlights the importance of generating reports (as those
provided in our approach) that offer insights on the status of the ML product
throughout its development and operation.

The MLOps lifecycle consists of managing multiple versions of exper-
iments, datasets, models, and their associated metadata, and optimizing
workflows across these lifecycle stages is crucial [21]. Our research method-
ology supports this optimization by leveraging architectural patterns that
facilitate the generation of multiple experiment versions. Resulting quanti-
tative metrics are then used to compare a wide range of design alternatives.

Our approach can be integrated with existing MLOps techniques (e.g.,
Kubeflow [10], Amazon SageMaker [39], or Metaflow [8]) leveraging the sim-
ulation reports produced by AP4FED. Our quantitative evaluation includes
metrics that assess both system and predictive performance, making them
valuable for analyzing ML products within existing tools and pipelines.

5.4. Threats to Validity

Besides inheriting limitations of architectural patterns and system per-
formance analysis [59, 74], our approach presents the following threats to
validity [67].

External validity. The generalization of our findings to different scenarios
cannot be ensured due to the constraints imposed by our experimental setup.
For instance, the available hardware resources, limited by the number of
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physical processors, restrict the scale of client devices in our experiments. As
a result, the quantitative analysis primarily reflects the behavior of a small
client population, which may not capture complexities and interactions of
large-scale FL systems. Despite these limitations, experimental outcomes
offer meaningful insights into the potential applicability and scalability of
the proposed methodology. In addition, AP4FED enables the execution
of large-scale experiments, offering high flexibility to the specific technical
requirements of software architects aiming to emulate real FL settings.

Internal validity. Settings and parameters adopted for our analysis may
pose certain risks. First, the proposed evaluation metrics capture a limited
set of FL characteristics, and the obtained results reflect that selection. As
future work, we plan to extend the evaluation and include additional met-
rics to explore further aspects of FL systems. Second, our experiments use
only image-based datasets, excluding tabular data. We acknowledge that
this choice limits the applicability of our approach, as it remains unclear if
implemented patterns perform similarly with other type of data. This also
leads to questioning our findings, since they might be influenced by the spe-
cific pattern implementation. As future work, we aim to investigate data
of different nature to study the flexibility of AP4FED. Third, numerical
values assigned to input parameters are selected to point out quantitative
differences across architectural alternatives. For example, we adjust the data
partitioning strategy (e.g., IID versus non-IID) among clients to evaluate
the impact of the heterogeneous data handling mechanism. To mitigate mis-
leading influences, we ensure consistent input settings across experiments
for each pattern, allowing observed results to be reliably linked to specific
architectural decisions. However, determining accurate numerical values for
input parameters is an ever existing challenge in system performance [12]
and other settings could be further investigated. Accordingly, we provide
publicly available instructions for setting up experiments and testing differ-
ent configurations [19]. Additionally, AP4FED empowers software architects
by offering a user-friendly interface to modify parameters and tailor experi-
ments to their specific requirements, thus enabling customization in running
the system performance analysis.

Construct validity, i.e., the statistical validity of experimental results is
monitored by repeating all the experimental configurations 10 times. We
show output metrics average and their 99% confidence intervals, thus to
assess the accuracy of the presented numerical outcomes.
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6. Related work

Architectural Patterns. Our work builds on extensive research emphasiz-
ing the significance of adopting architectural patterns in software system de-
sign [43, 6, 63, 46]. In recent years, the software architecture community has
increasingly enforce the adoption of patterns in ML systems [66, 11, 65, 48].
Washizaki et al. [66] conducted a study that classifies architectural patterns
specifically designed for ML systems, offering developers a structured frame-
work to identify and implement appropriate solutions. Their findings high-
light the importance of systematically evaluating the system performance
and predictive performance of these patterns, which represents the core fo-
cus of our research. Ntentos et al. [48] present a qualitative study aimed
at supporting architectural decision-making for training strategies in rein-
forcement learning systems. Practitioners’ knowledge is exploited to derive
established patterns and best practices, and ultimately formalize these in-
sights into a reusable architectural design decision model. Warnett et al. [64]
investigate the impact of architectural design decisions within ML operations
(MLOps), and a set of metrics is introduced to quantify the automation in
such a context. Interestingly, the authors point out that the metrics are
valuable to quantify the quality of MLOps systems whilst ensuring compli-
ance with non-functional requirements, e.g., system performance as proposed
in this paper. Leest et al. [34] and Takeuchi et al. [62] propose well-defined
approaches to tackle practical design challenges in ML systems, further em-
phasizing the need for methodologies that bridge architectural design with
real-world application requirements.

Federated Learning. FL presents notable benefits over centralized ML,
particularly in terms of system efficiency and privacy [70, 35]. However, this
distributed approach also introduces new architectural challenges, especially
in managing the complex interactions between servers and clients. To ad-
dress these issues, recent studies by Lo et al. [40] and Rajasekaran et al. [53]
have proposed a suite of architectural patterns that provide structured so-
lutions to these challenges. Recent studies have begun integrating these
architectural patterns highlighting the importance of structured approaches
to enhance system robustness. Ma et al. [42] introduce the Client Selector
pattern by implementing an algorithm that prioritizes clients based on com-
putational capacity and network conditions, aiming to mitigate delays caused
by slower clients while preserving model accuracy. Pavlidis et al. [51] expand
on client selection by introducing an algorithm that prioritizes clients based
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on computational power and network conditions, aiming to reduce delays
from slower clients while achieving good model accuracy. Chahoud et al. [15]
propose a mechanism that facilitates the establishment of a trust relation-
ship between the server and the pool of eligible clients, while concurrently
strengthening defenses against unauthorized data access or manipulation.
Fan et al. [23] explore Heterogeneous Data handling techniques by imple-
menting GANs within a FL system, thus addressing challenges like privacy
and data heterogeneity. Unlike standard FL, this method synchronizes both
weights and the interaction between generators and discriminators, enforcing
confidentiality and preserving data quality.

To the best of our knowledge, the closest related methodologies are dis-
cussed hereafter. Lai et al. [33] introduce a FL benchmark engine. Unlike
our research, their work focuses on creating a standardized benchmarking
suite for FL systems without exploring the impact of architectural alterna-
tives on system performance through empirical evaluation. Casalicchio et
al. [14] introduce a workbench platform designed to evaluate the system per-
formance of Federated Learning systems, incorporating patterns described
in [41]. While this work was initially considered for comparison, the absence
of reproducible experimental instructions and the lack of accessibility to the
proposed tool prevent any meaningful correlation with our approach.

In summary, existing studies primarily focus on introducing architectural
patterns for FL systems, emphasizing only their potential advantages. Our
work advances the state-of-the-art by proposing a methodology that not only
evaluates the impact of these architectural alternatives on system perfor-
mance and predictive performance, but also provides insights about their
combined usage. To this end, we introduce AP4FED, a benchmark frame-
work that enable software architects to design and analyze FL systems adopt-
ing one or multiple architectural patterns. Its strengths include a modular
design that simplifies the integration of architectural patterns and a GUI that
makes building configurations straightforward, even for complex setups.

7. Conclusion

This paper presents AP4FED, a publicly available benchmark framework
to quantitatively evaluate FL systems through the integration of six architec-
tural patterns. AP4FED provides a versatile platform that enables software
architects to emulate realistic FL. systems and assess the impact of archi-
tectural alternatives derived from the literature [41] and considered relevant
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for system performance and predictive performance. Our findings suggest
that architectural patterns are promising solutions for addressing FL design
challenges. However, their adoption involves trade-offs, as the predictive
performance improvements come with an additional overhead that varies
depending on the specific pattern. For instance, the Heterogeneous Data
Handler reduces training time and increases model accuracy by utilizing
GAN-based data augmentation to balance non-IID client datasets, thereby
minimizing gradient variance and enhancing global model convergence. The
Multi- Task Model Trainer pattern improves global model accuracy by lever-
aging shared data characteristics across separated but related tasks. In ad-
dition, the combination of multiple architectural patterns requires thorough
analysis, as they may interact in unexpected ways, potentially introducing
system performance drawbacks in the FL system. Analyzing these inter-
actions helps the identification of trade-offs and optimization of overall FL
system performance and predictive performance.

In future work, a primary activity will be devoted to evaluate the use-
fulness of the proposed framework, thus understanding at which extent it
supports software architects. To this end, we plan to define a user study by
which software architects can express their opinions. This is of key relevance,
since we can use the feedback to further improve our framework. Besides,
we plan to extend AP4FED by considering further evaluation metrics, e.g.,
software/hardware failures for system reliability. As another example, secu-
rity flaws may be detected in data since clients may be exposed to attacks,
and it may be relevant to detect data poisoning. Furthermore, we plan to
test additional datasets, mainly exploring tabular formats, since they may
contribute to different findings.
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