
Performance Analysis of Architectural Patterns
for Federated Learning Systems

Ivan Compagnucci
Gran Sasso Science Institute

L’Aquila, Italy
ivan.compagnucci@gssi.it

Riccardo Pinciroli
Zimmer Biomet

Milan, Italy
riccardo.pinciroli@gssi.it

Catia Trubiani
Gran Sasso Science Institute

L’Aquila, Italy
catia.trubiani@gssi.it

Abstract—Designing Federated Learning systems is not trivial,
as it requires managing heterogeneous and distributed clients’
resources, while balancing data privacy and system efficiency.
Architectural patterns have been recently specified in the litera-
ture to showcase reusable solutions to common problems within
Federated Learning systems. However, patterns often lead to both
benefits and drawbacks, e.g., introducing a message compressor
algorithm may reduce the system communication time, but it may
produce additional computational costs for clients’ devices. The
goal of this paper is to quantitatively investigate the performance
impact of applying a selected set of architectural patterns when
designing Federated Learning systems, thus providing evidence
of their pros and cons. We develop an open source environment
by extending the well-established Flower framework; it integrates
the implementation of four architectural patterns and evaluates
their performance characteristics. Experimental results assess
that architectural patterns indeed bring performance gains and
pains, as raised by the practitioners in the literature. Our
framework can support software architects in making informed
design choices when designing Federated Learning systems.

Index Terms—Architectural Patterns, Federated Learning,
Performance Evaluation

I. INTRODUCTION

Federated Learning (FL) systems are increasingly attract-
ing attention from both researchers and practitioners [1]–[3],
mainly due to their peculiar characteristic of distributing the
learning to multiple clients, thus reducing data privacy risks
and computational costs encountered by traditional centralized
methods [4], [5]. According to Gartner’s 2023 Hype Cycle
for Emerging Technologies [6], Federated Learning (FL) has
the potential to revolutionize machine learning applications
by enabling collaborative model training across distributed
data sources without the need to share sensitive data. Recent
studies on FL [7], [8] lists performance optimization as one of
the main challenges in this domain. Computational overhead
may be introduced for different reasons: (i) preventing pri-
vate data from being leaked during model transmission; (ii)
guaranteeing high communication efficiency; (iii) tolerating
heterogeneous hardware resources and handling fault tolerance
in case of offline devices; (iv) verifying the accuracy of local
models. All these scenarios motivate the need to instrument
FL systems and enable their performance evaluation [9], thus
understanding when performance issues may arise.

In the software architecture community, designing FL sys-
tems is recognized as an emergent topic, and a reference

architecture, namely FLRA, has been recently defined in [2].
A follow-up work from the same authors is presented in [10]
where a collection of architectural patterns is derived from
a systematic literature review, and the design challenges of
FL systems are presented. Notably, applying architectural
patterns triggers both benefits and drawbacks for the system
performance. For instance, the Client Selector pattern [10]
consists of selecting clients with more power and network
bandwidth, thus reducing the chances of clients dropping
out and lowering the communication latency. This entails
the introduction of a Client Registry pattern [10] that is in
charge of storing information about the client devices, but the
maintenance of this information requires extra communication
and storage costs, which is further affected by the number of
client devices [10]. Inspired by these challenges, our research
focuses on developing a framework that enables the perfor-
mance analysis of FL architectural patterns, thus supporting
software architects in making informed decisions.

To the best of our knowledge, the most closely related state-
of-the-art approaches to architecting FL systems are [9], [11].
Di Martino et al. [11] investigate the quantitative impact of
architectural patterns applied to the design of Cloud Edge
architectures within the healthcare domain. Lai et al. [9] pro-
pose a benchmark to emulate FL environments while offering
application programming interfaces (APIs) to implement, de-
ploy, and evaluate FL algorithms. As opposite, this paper aims
to quantitatively analyze the performance characteristics of
some architectural patterns extracted from [10]. Specifically,
we develop a novel framework, namely Architectural Patterns
for Federated Learning AP4FED, that builds upon the well-
consolidated Flower [12], and hosts the implementation of
these four selected architectural patterns: (i) the Client Registry
that stores information on clients contributing to the training;
(ii) the Client Selector that improves the system efficiency
by selecting clients that show some preferred criteria, e.g.,
more computational power; (iii) the Client Cluster that en-
hances the training efficiency by grouping clients based on
their similarities; (iv) the Message Compressor that increases
communication efficiency by reducing the message data size.

In summary, the main contributions of this paper are: (i) the
development of an FL framework hosting the implementation
of four architectural patterns indicated relevant for the system
performance in a recent literature review [10]; (ii) the design



of experiments whose results support software architects in
quantitatively understanding the impact of these architectural
patterns on the performance of FL systems; (iii) the flexibility
in changing the design settings for patterns, thus enabling
further quantitative investigations. The developed framework
and replication data are publicly available [13].

II. BACKGROUND

Federated Learning. The exponential growth of computing
devices, now equipped with advanced sensors such as cameras,
microphones, and GPS, has resulted in the generation of high
amounts of data, much of which are often sensitive and highly
personal [10], [14]. This vast amount of data has driven the
development of machine learning applications, as it represents
a valuable resource for training prediction models capturing
complex patterns, and improving decision-making [7]. How-
ever, while this data holds significant potential for machine
learning applications, its sensitive nature raises serious privacy
concerns, especially when shared with centralized servers or
external organizations [1], [15]. FL is a paradigm introduced
by Google in 2016 [14], in which multiple client devices (e.g.,
mobile phones and laptops) collaborate under the coordination
of a central server to train a global machine learning model,
while keeping their local data private [1], [7], [10]. It addresses
data privacy by enabling machine learning model training
directly on clients’ devices, ensuring that personal data is
locally stored. It also allows computation to be distributed
across a network, improving scalability and reducing reliance
on centralized processing resources [15].

Figure 1 provides an overview of the FL mechanism. A FL
process starts when a central server broadcasts a set of initial
global model parameters (i.e., model weights and structure)
to all participating clients 1 . After receiving the parameters,
model training is performed locally across the client devices
2 . Then, each participating client device sends its updated

model parameters (i.e., trained model weights) to the central
server 3 . The central server collects all trained models and
aggregates them to generate an updated “version” of the global
model 4 . New parameters of the global model are then
distributed to the client devices for the next FL round. This
establishes an iterative process for continuously updating and
improving the global model until it converges.

Developing FL systems is far from trivial, as it requires
robust coordination among system parties (i.e., clients and the
central server), overcoming challenges on device heterogene-
ity, and scalability across networks [14], [15]. To effectively
manage this complexity, Flower [12] has emerged as a leading
framework for supporting and simplifying the deployment of
FL systems. Flower offers a standardized implementation of
essential FL components, along with high-level abstractions
that enable researchers and practitioners to explore and imple-
ment new functionalities [12]. For all these reasons, we make
use of Flower as the reference framework to implement and
evaluate the performance of FL architectural patterns.

Architectural Patterns. The selection of patterns is motivated
by our focus on investigating performance-related character-

Client 1
…

Server

Model
Aggregation

…

Local Model 
Training

Sending Trained
Model Parameters

Client n

Sending Model 
Parameters

1

3

2

4

Fig. 1: Federated Learning overview, inspired by [10].

Parameter Description

NUM_ROUNDS no. of Federated Learning Rounds
nS no. of Server Container Instances
nC no. of Client Container Instances
n_CPU no. of CPUs allocated to each Container
RAM memory capacity allocated to each Container

TABLE I: System parameters summary.

istics of FL systems. We consider all those patterns that are
relevant for system efficiency [10]. We exclude the patterns
that contribute to other aspects of FL systems, e.g., the so-
called Model Aggregation patterns include design solutions of
model aggregation used for different purposes. The detailed
description of selected patterns is provided in [10], in the
following, we briefly outline their main characteristics:

i. The Client Registry manages and provides information
about all clients participating in the training process;

ii. The Client Selector samples client devices during the
training according to some predefined criteria to increase
the system efficiency;

iii. The Client Cluster groups client devices to improve the
training efficiency;

iv. The Message Compressor reduces the message data size
to increase the communication efficiency.

III. METHODOLOGY

Our methodology consists of developing a novel FL frame-
work, namely AP4FED [13], that hosts the implementation
of selected patterns and enables their evaluation. We leverage
Flower [12], and architectural patterns are implemented by
extending its codebase Python library. It is worth remarking
that software architects can use AP4FED by following our
detailed instructions (please refer to [13]), i.e., modifying input
parameter values and conducting further investigations.

A. AP4FED Infrastructure

The overview of the developed environment is depicted
in Figure 2. This setup uses Docker-Compose to create a
configuration with one container representing the central server



…
Client nClient 1

Server

Fig. 2: AP4FED Infrastructure overview.

and multiple containers acting as client devices. This envi-
ronment simulates a real-world FL scenario, where isolated
Docker containers represent a network of clients performing
local training, and a central server container handles model
aggregation. Our framework extends the Flower Python library
version 1.12.0 [12]. Flower provides a set of methods to
enable the communication between the server and all clients,
handling key aspects such as client-server message exchange,
model updates, and round-based coordination. We use PyTorch
version 2.5.0 [16] for model training, allowing each client
to train on local data. Table I collects the input parameters
to set up the environment, i.e., the number of FL rounds
(NUM_ROUNDS), instances of server and client containers (nS
and nC, respectively), and the allocation of resources per
container, specifically the number of physical CPUs (n_CPU)
and the RAM capacity. Note that, these parameters may in-
tentionally vary depending on the experimental setup, which
is determined by the architectural pattern under investigation.
For instance, the Client Selector pattern selects client devices
depending on their available resources, hence we decide to set
up clients with a different number of allocated CPU(s).

B. Client Registry Architectural Pattern

Server
Client Registry

Client Device 
Information

ClientClient

Client

Fig. 3: Client Registry pattern overview.

Context. The Client Registry pattern is designed to store
relevant information of each client device participating in an
FL process [10]. As illustrated in Figure 3, the central server
maintains a centralized data registry for storing client device

Parameter Description

cID Client Unique Identifier
n_CPU no. of Container CPU
cluster_Type Cluster associated to the Client
training_time Client Training Time
communication_time Client Communication Time
total_round_time Client Total Round Time

TABLE II: Extended parameters for Client Registry.

data. At the beginning of each round, the server sends a request
to each client, that responds with a set of attributes including
device ID, connection uptime and downtime, and resource
availability (e.g., computational power, communication capac-
ity, and storage). This architectural pattern plays a key role
in ensuring efficient client management, enabling the server
to monitor all connected devices and gather useful insights,
such as identifying clients that are actively participating, have
disconnected, or exhibit untrustworthy behavior [10].

Our Implementation. This architectural pattern is already
partly implemented in Flower through the ClientManager1

abstract base class. This class enables the Client Registry
to track each client’s information and interactions with the
server. However, relevant parameters regarding the client
performance (i.e., number of CPUs) or the device system
metrics (i.e., training or communication time) are missing.
Such attributes provide key information that can be lever-
aged to exploit new features, such as dynamic client se-
lection based on resource availability or prioritizing clients
with higher stability for critical rounds. For this reason, we
extend the standard ClientManager class to implement
additional parameters. Table II lists the added parameters.
We consider a unique client identifier (cID), that is gener-
ated when each client is instantiated. This identifier helps
to distinguish clients within the system. The n_CPU pa-
rameter, which indicates the number of CPUs assigned to
each container. The cluster_Type parameter is a label
reassigned at each round to group clients based on a pre-
defined client clustering strategy (see Section III-D). Tim-
ing parameters are collected using psutil, i.e., a Python
library for retrieving system metrics. The training_time
parameter records the time each client spends on the local
model training. The communication_time measures the
time required to exchange model parameters with the server.
The total_round_time parameter represents the overall
time each client takes to complete a round, combining both
training and communication durations.

C. Client Selector Architectural Pattern

Context. The Client Selector pattern introduces a mechanism
for selecting a subset of client devices to participate in the FL
round according to specific criteria [10], [17]. Such criteria
can be categorized as follows: (i) resource-based factors,
which evaluate the computational and network capabilities
of devices; (ii) data-based factors, which assess the quality,

1Additional information is available at https://flower.ai/docs/framework/
ref-api/flwr.server.ClientManager.html

https://flower.ai/docs/framework/ref-api/flwr.server.ClientManager.html
https://flower.ai/docs/framework/ref-api/flwr.server.ClientManager.html


Server

Client Client

Client

Fig. 4: Client Selector pattern overview.

heterogeneity, and volume of the data each client holds; and
(iii) performance-based factors, which assess each client’s
contributions to the global model enhancement based on their
performance in the latest round [17]. Overall, this assessment
involves evaluating resources, data quality, and performance
metrics to determine if and which clients are best suited for
contributing to the global model aggregation. As depicted in
Figure 4, the server evaluates each client by analyzing the
information stored in the Client Registry, to exclude or include
clients based on selection criteria. Evaluating and selecting
clients based on their characteristics may mitigate challenges
associated with limited computational resources, unbalanced
data distribution, and unstable client connectivity [10], [17].

Our Implementation. To implement the Client Selec-
tor pattern, we apply a filtering procedure to the Flower
configure_fit2 method, thus assessing the eligibility of
client devices for the FL round. The configure_fit
method sets the essential information (i.e., participating
clients, model parameters) required to conduct the FL round.
At the beginning of each round, the server accesses the
Client Registry to review clients’ information. Our current
implementation considers the resource-based selection strat-
egy [10], in which the server selects clients on the basis of
their computational power, e.g., the number of allocated CPUs.
This process ensures that only clients meeting specific criteria
are chosen for each round, thus optimizing the FL process.

D. Client Cluster Architectural Pattern

Server

Client
Client

Client
Client

Cluster A Cluster B

Fig. 5: Client Cluster pattern overview.
2Additional information is available at https://flower.ai/docs/framework/

how-to-implement-strategies.html

Context. The Client Cluster pattern groups client devices
based on the similarity of their characteristics. They can be
categorized as follows: (i) computational resources, referring
to the device’s processing power and memory capacity; (ii)
network capabilities, i.e., the speed and stability of the device’s
network connection; and (iii) data partitioning, considering
how data is distributed across devices [10]. The graphical
representation of the Client Cluster architectural pattern is
reported in Figure 5. The server uses the information from
the Client Registry to group clients into distinct clusters based
on their characteristics. By clustering clients with similar
features, the server can apply tailored aggregation and training
strategies. This is performed to enhance training efficiency
by reducing training round time and increasing the model
accuracy [10]. For instance, the server can address the data
heterogeneity problem [18] by clustering clients based on data
distribution, leading to improved model performance and faster
convergence [7], [10].

Our Implementation. Similarly to the Client Selector pat-
tern, we implement the Client Cluster mechanism through the
configure_fit method. Clients are assigned to a cluster
depending on their local data partitions, which may vary
between independent and identically distributed (IID) and non-
independent and identically distributed (non-IID) forms [18].
In IID data settings, each client has a balanced set of training
samples representing all classes and ensuring that data are
uniformly distributed. In contrast, non-IID data present an
unbalanced distribution, meaning that some clients have more
training examples of a specific class than others [7], [18].

E. Message Compressor Architectural Pattern

Server Client

Model Parameters
(Compression)

Local Model Trained
(Compression)

1 2

34

Model Parameters
(Decompression)

Local Model Trained
(Decompression)

Fig. 6: Message Compressor pattern overview.

Context. The Message Compressor pattern introduces a
procedure to reduce the size of message data exchanged (e.g.,
model weight and structure) between the central server and
client devices in an FL environment [10], [19]. As illustrated
in Figure 6, this pattern operates on both ends of the system.
Initially, the server compresses the model parameters 1 before
sending them to client devices. The data is transmitted in
a compressed format, hence reducing communication over-
head. Upon receiving compressed parameters, client devices
decompress the data 2 and prepare it for local training.
After completing local training, client devices compress their

https://flower.ai/docs/framework/how-to-implement-strategies.html
https://flower.ai/docs/framework/how-to-implement-strategies.html


updated model parameters 3 before transmission. Then, the
server decompresses received messages 4 to aggregate all
models. In FL, multiple rounds of model exchange occur
between the server and client devices to collaboratively train
the global model [15]. By minimizing the volume of data
transmitted, the Message Compressor significantly decreases
communication time and preserves bandwidth, which could
be particularly beneficial for bandwidth-constrained client
devices [10]. However, the time needed for compression and
decompression can overcome the saving in communication
time, especially when the exchanged data are low.

Our Implementation. We implement the Message Compres-
sor pattern by introducing a compression mechanism to opti-
mize data exchanges between clients and the server. Specifi-
cally, our approach embeds the zlib library [20] to implement
two-stage compression and decompression (server-to-client
and client-to-server), effectively reducing the overhead and
improving the communication efficiency. zlib belongs to the
LZ77 family of compression algorithms and is valued for its
high-speed compression with minimal resource consumption,
making it a good choice among available algorithms [21].

IV. EXPERIMENTS

Subject Systems. We train a Convolutional Neural Network
(CNN) as a global model on the CIFAR-10 dataset [22],
which consists of 60, 000 32x32 color images (50, 000 images
for training and 10, 000 for testing) divided into 10 distinct
classes. Each class includes images representing objects and
animals (i.e., trucks, dogs), challenging the CNN to effectively
recognize and classify images into one of the 10 classes.
The main characteristics of the global model are reported
in Table III. The CNN consists of two convolutional layers
(Conv) with ReLU activations, followed by max-pooling layers
(Pool) to reduce spatial dimensions. Specifically, the first
convolutional layer (Conv1) has 6 filters with a 5x5 kernel,
and the second convolutional layer (Conv2) has 16 filters with
a 5x5 kernel. Each convolutional layer is followed by ReLU
activation. The model then transitions to two fully connected
layers (FC), where FC1 has 120 units, FC2 has 84 units, and
the final layer (FC3) has 10 units corresponding to the classes
of CIFAR-10. The model is trained with a batch size of 32,
a learning rate of 0.001, and a Stochastic Gradient Descent
(SGD) with a momentum equal to 0.9.

Hardware Setup. Experiments are conducted on a commod-
ity machine with an Apple M3 Pro chip featuring an 11-core
CPU @4.02GHz and 36GB memory. Docker Compose en-
ables the manual allocation of resources to each container
(e.g., CPU core and RAM) allowing flexible experiment con-
figurations tailored to the architectural pattern being evaluated.
For instance, different CPU allocations are assigned to client
containers to evaluate system performance when implementing
the Client Selector pattern. This approach provides a scenario
with computational disparity between clients to analyze how
different resource allocations impact the system performance.
It is worth remarking that the maximum number of concur-
rently running containers is limited by the host machine’s

Parameter Value

Dataset CIFAR-10
Training Samples 50, 000
Test Samples 10, 000
Model Type Convolutional Neural Network
Model Structure Conv1: 6 filters, 5x5 kernel, ReLU activation

Pool: Max pooling, 2x2 kernel
Conv2: 16 filters, 5x5 kernel, ReLU activation
FC1: 120 units, ReLU activation
FC2: 84 units, ReLU activation
FC3: 10 units (for CIFAR-10’s 10 classes)

Batch Size 32
Learning Rate 0.001
Optimizer SGD (momentum = 0.9)

Conv: Convolutional Layer; Pool: Pooling Layer; FC: Fully Connected Layer.

TABLE III: Global model parameters.

Parameter Description

Training Time Time Spent on Local Training
Communication Time Time for Client-Server Communication
Total Round Time Total Time for each FL Round
F1 Score F1 score of the global model

TABLE IV: Evaluation metrics used in the experiments.

capacity (i.e., 11 core) to prevent CPU overcommitment. This
is crucial, as exceeding devices’ processing limits can lead to
resource contention, potentially invalidating the replicability
of experimental results [23]. All experiments are repeated 10
times and reported results are the average of all outputs. The
99% confidence interval is represented by shaded areas in all
graphs.

Evaluation Metrics. Table IV lists metrics used in our ex-
periments, as proposed in [24]. We evaluate key performance
indicators, including training, communication, and total round
times, as well as model accuracy using the F1 score [25].
These metrics provide round-by-round performance tracking,
offering quantifiable insights into the trade-offs associated with
the design solutions of architectural patterns.

A. Performance Analysis: Client Selector

Table V presents input parameters used for the Client
Selector pattern experiment. We consider 10 training rounds,
a single server, and 4 clients. To test the effectiveness of
this pattern, clients are divided into High-Spec and Low-Spec
categories based on their computational capacity. High-Spec
clients are equipped with 2 CPUs, providing larger processing
power, while Low-Spec clients have 1 CPU only, reflecting
more limited computational capacity. Since we implement a
resource-based selection strategy, we establish specific evalua-
tion criteria requiring clients to have a physical CPU allocation
greater than one to participate in each FL round.

As reported in Table VI, we evaluate the performance of
the Client Selector pattern through three different experiment
configurations labeled A, B, and C. In each configuration, we
keep an number of 4 Clients and 1 Server. Config. A includes 4
High-Spec clients without applying the Client Selector pattern.
In Config. B, we introduce a Low-Spec client and 3 High-
Spec ones, and we do not make use of the selection strategy.



1 2 3 4 5 6 7 8 9 10
Federated Learning Round

0.2

0.3

0.4

0.5

0.6

F
1 

Sc
or

e
Config. A Config. B Config. C

(a) F1 Score per FL round

1 2 3 4 5 6 7 8 9 10
Federated Learning Round

500

1000

1500

2000

T
ot

al
 R

ou
nd

 T
im

e 
(s

ec
)

Config. A Config. B Config. C

(b) Total Time per FL round

1 2 3 4 5 6 7 8 9 10
Federated Learning Round

0.0

0.1

0.2

0.3

F
1 

Sc
or

e 
/ 

T
ot

al
 R

ou
nd

 T
im

e Config. A Config. B Config. C

(c) F1 Score over Total Round Time

Fig. 7: Performance analysis of the Client Selector pattern.

TABLE V: Input parameters for Client Selector experiments.

Parameter Value

NUM_ROUNDS 10
nS 1
nC 4
n_CPU 1 for Low-Spec Clients;

2 for High-Spec Clients
RAM 2GB
Selection Strategy Resource-based
Selection Criteria no. of CPU >1

TABLE VI: Experiment configurations for Client Selector.

Config. A Config. B Config. C

Client Selector ✗ ✗ ✓
no. of High-Spec Clients 4 3 3
no. of Low-Spec Clients - 1 -

Total Clients 4 4 4 → 3

✗: Without Client Selector pattern; ✓: With Client Selector pattern.

Config. C follows the same setup as Config. B; however, we
introduce the Client Selector to exclude the Low-Spec client,
limiting the learning process to 3 High-Spec clients.

Figure 7 depicts the performance analysis of an FL system
implementing the Client Selector pattern. Starting from the
global model accuracy, Figure 7a depicts the F1 Score evolu-
tion across FL rounds for each experiment configuration. The
results of all experiments indicate that, after 10 rounds, the
accuracy ranges between 0.57 and 0.59, with stable model
convergence. Figure 7b shows the total time required to
complete an FL round for each configuration. Results indicate
that Config. A and Config. C exhibit similar round time, with
Config. C being slightly faster. This behavior is expected as
Config. C, compared to Config. A and Config. B, excludes
one client from the FL round, thus reducing the workload for
model training and aggregation. Configuration B shows a high
FL total round time, approximately 9× longer than Config. C,
due to the bottleneck introduced by the Low-Spec client. We
aggregate accuracy and total round time to derive an efficiency
metric, represented by the ratio of F1 Score and Total Round
Time across rounds. Values assumed by this ratio are shown in
Figure 7c, where we can notice that the best trade-off between
accuracy and efficiency is achieved by Config. C that is the
one implementing the pattern. Config. A achieves moderate

efficiency with some fluctuation across rounds. As expected,
Config. B maintains the lowest efficiency ratio, reflecting the
overhead introduced by the Low-Spec client in FL rounds.

Architectural Implications. Software architects can employ
this architectural pattern when there is a disparity among
clients in terms of resource capabilities. Experimental results
show that the system response time, expressed as the total
round time in FL contexts [24], deteriorates when Low-Spec
clients participate in FL rounds, thus leading to bottlenecks
and high waiting time.

B. Performance Analysis: Client Cluster

Table VII reports input parameters used in the Client Cluster
experiment. The setup involves 10 rounds of FL with 1 server
and 8 clients with 1 CPU and 2GB of RAM. We implement
the Client Cluster architectural pattern by adopting a data
distribution-based strategy [10], thus creating two distinct
clusters: Cluster A and Cluster B based on how client data
is partitioned. Clients in Cluster A show an equal distribution
of data samples across classes, representing IID data, while
clients in Cluster B contain non-IID data. To partition the
non-IID data for clients in Cluster B, we use the Dirichlet
distribution [26]3, effectively replicating variations in data dis-
tribution. This approach enables a realistic and accurate test of
the Client Cluster pattern, effectively simulating typical real-
world scenarios where non-IID datasets are common [15]. The
Dirichlet Distribution is a multivariate probability distribution,
commonly used in FL experiments [18], [27], allowing for
non-IID data’s partitions. For completeness, we report the
Dirichlet distribution formula:

p(x1, x2, . . . , xk) =
1

B(α)

k∏
i=1

xαi−1
i

p(x1, x2, . . . , xk) represents the probability density function
of the Dirichlet distribution for k variables. The constant
B(α), known as the beta function, normalizes the distribution,
calculated based on the parameters α = (α1, α2, . . . , αk) to
ensure the total probability sums to one. The term

∏k
i=1 x

αi−1
i

represents the product of each variable xi raised to the power
αi−1, capturing the non-uniformity in probability distribution

3https://flower.ai/docs/datasets/ref-api/flwr datasets.partitioner.
DirichletPartitioner.html

https://flower.ai/docs/datasets/ref-api/flwr_datasets.partitioner.DirichletPartitioner.html
https://flower.ai/docs/datasets/ref-api/flwr_datasets.partitioner.DirichletPartitioner.html


TABLE VII: Input parameters for Client Cluster experiments.

Parameter Value

NUM_ROUNDS 10
nS 1
nC 8
n_CPU 1
RAM 2GB
Training Samples 50, 000 → 25, 000
Cluster Strategy Data Partitioning Type
Cluster Criteria IID vs non-IID

0 25 50 75 100
Class Distribution (%)

Client 4 - A

Client 3 - A

Client 2 - A

Client 1 - A

0 25 50 75 100
Class Distribution (%)

Client 4 - B

Client 3 - B

Client 2 - B

Client 1 - B

airplane
automobile

bird
cat

deer
dog

frog
horse

ship
truck

Fig. 8: IID (Cluster A) vs non-IID (Cluster B) distribution.

across variables. Here, α defines the degree of imbalance,
allowing adjustments to test varying levels of data non-
uniformity in partitioning. The number of training examples in
these experiments is reduced from 50, 000 to 25, 000 to allow a
different distribution of non-IID data. This change is due to the
CIFAR-10 dataset maximum number of samples being 5, 000
per class (across 10 classes). This way, we assign a different
amount of samples across classes to Cluster B, ensuring fair
and comparable experiment configurations. Figure 9a depicts
the difference in data partitioning for Clusters A and B,
highlighting the percentage of examples for each class. In
Cluster A, each class in the CIFAR-10 dataset has 2, 500
training examples, while Cluster B displays a non-uniform
distribution, such as 500 examples for dog and 4, 500 for ship
classes, ensuring that the total number of training examples
remains equal between the two clusters.

Table VIII collects the three different analyzed configura-
tions, i.e., 4a4b, 5a3b, and 6a2b. Each configuration label, such
as 4a4b, represents the specific number of Clients A with IID
data and Clients B with non-IID data (e.g., 4a4b means 4
Clients A and 4 Clients B). Each configuration is evaluated
with and without applying the Client Cluster pattern. The
clustering methodology generates two distinct global models:
model A, trained with Clients A, and model B, trained with
Clients B. This approach allows for a detailed analysis of how
clustering influences the model performance across diverse
data distributions. Non-clustered configurations remove the
clustering component, leading all clients to collaborate on
a single global model A, mixing IID and non-IID data. By
progressively decreasing the proportion of non-IID clients (i.e.,
from 4a4b to 5a3b and 6a2b), this setup enables a compre-
hensive assessment of how changes in the number of non-IID
clients impact model training efficiency (i.e., better accuracy,

TABLE VIII: Experiment configurations for Client Cluster.

Config. 4a4b Config. 5a3b Config. 6a2b

Client Cluster ✓, ✗ ✓, ✗ ✓, ✗
Dirichlet α 0.5 0.5 0.5
Data Distribution Type IID, non-IID IID, non-IID IID, non-IID
Total Clients 4 A + 4 B 5 A + 3 B 6 A + 2 B

✗: Without Client Cluster pattern; ✓: With Client Cluster pattern.

lower training time). This highlights the impact of the Client
Cluster pattern in effectively managing heterogeneous data
distributions across clients.

Results of this experiment are shown in Figure 9, where we
report the accuracy (F1 Score), the average training time, and
the efficiency metric evaluated on the ratio between accuracy
and training time. Figure 9a depicts the F1 Score of each
global model against FL rounds. We can notice that all the
configurations with clustering (represented by dashed lines),
show an overall higher F1 Score (except for the first round),
demonstrating improved model accuracy and faster conver-
gence over FL rounds. In contrast, non-clustered configura-
tions (solid lines) yield lower F1 Scores, showing low model
accuracy and slower convergence across FL rounds. Figure 9b
presents the clients average training time during FL rounds.
Configurations using the Client Cluster pattern exhibit shorter
and more stable training time across rounds, e.g., the 5a3b
configuration (with cluster) shows an observed training time
varying between 110 and 118 seconds across the ten rounds.
In contrast, configurations without the Client Cluster pattern
exhibit significantly higher and more variable training times.
For example, the 5a3b configuration (without cluster) reaches
peaks from 186 seconds in round 3 up to 263 seconds in round
8. This aligns with practitioners’ expectations, confirming that
training times can increase when rounds include clients with
non-IID data [18], [27]. Figure 9c depicts the F1 Score against
the average training time, providing a metric for assessing the
system performance efficiency. As highlighted by the trends,
clustered configurations exhibit a higher efficiency ratio. In
contrast, values assumed by configurations without the Client
Cluster pattern, show lower efficiency.

Architectural Implications. Software architects may benefit
from adopting this pattern in scenarios where clients exhibit
high heterogeneity in their local data distribution, such as in
the case of non-IID distributions. Experimental results indicate
that using a clustering approach to group clients based on data
partition characteristics accelerates global model convergence
and reduces the average training time in FL systems.

C. Performance Analysis: Message Compressor

Table IX reports input parameters for the Message Compres-
sor pattern experiment. This setup includes 10 FL rounds, with
a single server and 8 clients, each one with 1 CPU and 2GB of
RAM. This pattern implements a compression mechanism for
exchanging global model data between clients and the central
server, using version 1.3.1 of the zlib Python library [20] for
both compression and decompression steps.

Table X reports three different experiment configurations for
the Message Compressor pattern, specifically we progressively



1 2 3 4 5 6 7 8 9 10
Federated Learning Round

0.0

0.1

0.2

0.3

0.4

0.5

F
1 

Sc
or

e 
fo

r 
M

od
el

 A
4a4b with cluster
4a4b no cluster

5a3b with cluster
5a3b no cluster

6a2b with cluster
6a2b no cluster

(a) F1 Score per round

1 2 3 4 5 6 7 8 9 10
Federated Learning Round

100

120

140

160

180

200

220

240

A
ve

ra
ge

 T
ra

in
in

g 
T

im
e 

(s
)

4a4b with cluster
4a4b no cluster

5a3b with cluster
5a3b no cluster

6a2b with cluster
6a2b no cluster

(b) Average Training Time per round

1 2 3 4 5 6 7 8 9 10
Federated Learning Round

0

1

2

3

4

5

F
1 

Sc
or

e 
/ 

A
ve

ra
ge

 T
ra

in
in

g 
T

im
e

4a4b with cluster
4a4b no cluster

5a3b with cluster
5a3b no cluster

6a2b with cluster
6a2b no cluster

(c) F1 Score over Average Training Time

Fig. 9: Performance analysis of the Client Cluster Pattern.

Parameter Value

NUM_ROUNDS 10
nS 1
nC 8
CPU 1
RAM 2GB
Compression Library zlib [20]

TABLE IX: Input parameters for Message Compressor exper-
iments.

increase the global model size by adjusting the number of
convolutional, pooling, and fully connected layers to scales
of n/2, n, and n ∗ 2. Here, n represents the global model
size determined by the structure described in Section III.
Each experiment is conducted with and without the Message
Compressor pattern, thus contributing to assessing its impact.

TABLE X: Experiment configurations of Message Compres-
sor.

Config. n/2 Config. n Config. n ∗ 2

Message Compressor ✓, ✗ ✓, ✗ ✓, ✗
Model Structure
Conv1 3 filters, 5x5 kernel 6 filters, 5x5 kernel 12 filters, 5x5 kernel
Pool Max pooling, 2x2 kernel Max pooling, 2x2 kernel Max pooling, 2x2 kernel
Conv2 8 filters, 5x5 kernel 16 filters, 5x5 kernel 32 filters, 5x5 kernel
FC1 60 units 120 units 240 units
FC2 42 units 84 units 168 units
FC3 10 units 20 units 30 units

Batch Size 32 32 32
Learning Rate 0.001 0.001 0.001
Optimizer SGD SGD SGD

✗: Without Message Compressor pattern; ✓: With Message Compressor pattern.

Figure 10 illustrates the results of the experiments. For each
configuration, we depict the average communication time. The
shaded areas capture the reduction or the increasing in the
estimated time, in plain or framed colored areas, respectively.
This enables a direct comparison of performance with and
without the Message Compressor architectural pattern, facili-
tating an assessment of its impact using the same model size.
Figure 10a shows the communication time obtained with the
n/2 configuration. In this case, we can observe an increase
in communication time when the pattern is used, suggesting a
possible overhead introduced by the compression and decom-
pression process. Figure 10b shows the communication time
for model size n. From round 4 onward, using compression
slightly reduces communication time, showing a marginal

benefit compared to the previous experiment. Figure 10c
shows the results for the n ∗ 2 configuration. Applying the
pattern here results in a reduction in communication time
across all rounds, suggesting higher gains in terms of reducing
communication time when applying compression to larger
models. In Figure 10d, we compare the relative improvement
in communication time across the three configurations. To
quantify this impact, we calculate the relative improvement
in communication time by comparing configurations with and
without compression. The formula is as follows:

Improvement (%) =
(
Tno compression − Tcompression

Tno compression

)
× 100

Here, Tno compression represents the average communication
time for clients without compression, while Tcompression indi-
cates the average communication time for clients with the
compression mechanism being applied. The formula provides
a metric for improvement, i.e., the percentage reduction in
communication time achieved through compression. Positive
values indicate a reduction in communication time, while
negative values reflect an increase. For the smaller model
size (n/2), enabling the Message Compressor pattern results
in a negative impact on communication time, indicating that
compression may be less effective or counterproductive with
smaller models. The experiment with model size set to n ini-
tially shows a negative impact during the first rounds, it turns
to an improvement in later rounds. In contrast, the larger model
size (n∗2) consistently shows improvement in communication
time across all rounds, indicating that the Message Compressor
is particularly effective for larger models.

Architectural Implications. Software architects can consider
this architectural pattern when managing large global models.
Experimental results indicate that, as the global model size
grows, implementing compression becomes increasingly rele-
vant, leading to a significant reduction in communication time
that improves the overall system latency.

V. DISCUSSION

A. Limitations on Architectural Patterns

Client Registry. This pattern is fundamental in our work to
implement other architectural patterns we consider within FL.



1 2 3 4 5 6 7 8 9 10
Federated Learning Round

350

400

450

500

550

C
om

m
un

ic
at

io
n 

T
im

e 
(s

ec
)

Positive Impact
Negative Impact

With Compression
Without Compression

(a) Communication Time for n/2

1 2 3 4 5 6 7 8 9 10
Federated Learning Round

400

450

500

550

600

C
om

m
un

ic
at

io
n 

T
im

e 
(s

ec
)

Positive Impact
Negative Impact

With Compression
Without Compression

(b) Communication Time for n

1 2 3 4 5 6 7 8 9 10
Federated Learning Round

350

400

450

500

550

600

650

C
om

m
un

ic
at

io
n 

T
im

e 
(s

ec
)

Positive Impact
Negative Impact

With Compression
Without Compression

(c) Communication Time for n×2

1 2 3 4 5 6 7 8 9 10
Federated Learning Round

-40

-20

0

20

Im
pr

ov
em

en
t 

(%
)

Config. n/2 Config. n Config. n*2

(d) Configurations Comparison

Fig. 10: Performance analysis of the Message Compressor pattern.

It is assessed to enhance both maintainability and reliability
in FL systems by centralizing client devices’ information [10].
However, centralizing sensitive client data on the server can
lead to privacy and security risks in case of malicious at-
tacks [10]. As future work, we can mitigate these risks,
e.g., an SSL/TLS authentication system can ensure secure
communication between clients and the server [15].

Client Selector. The client selection process optimizes re-
source usage and system scalability by sampling only clients
that are best suited for contributing to global model im-
provements [7], [15]. In our experiments, we test a resource-
based selection strategy, which confirms that this pattern
significantly reduces total round time in FL. By including
one Low-Spec client, we observe that the total round time
increases up to 9×, as Low-Spec clients generate significant
system bottlenecks. Indeed, when “slow” clients are included
in the FL round, other nodes of the system (i.e., clients and
server) must wait for slow devices to complete local training
and model parameters communication before starting a new
round. While this is true for the specific parameters set in our
experiments (see Section IV), we are confident that similar
behavior can be observed whenever there are further disparities
in computational client resources. For instance, data-based
selection criteria select only clients with high-quality data (i.e.,
rich and varying training samples). A limitation of the Client
Selector pattern is that excluding clients may lead to a loss
of valuable and unique data, potentially reducing the final
global model accuracy and limiting its generalization. This
is due to some clients holding exclusive portions of data from
which the model could learn unique patterns. Additionally,
the need to frequently assess clients (i.e., by verifying if they
are eligible for the FL round) introduces communication and
computational costs, that can significantly increase in systems
with a high number of participating devices. Both data-based
selection strategy and the overhead of continuously evaluating
clients require further investigation, which we plan to address
in future work.

Client Cluster. Our experiments on the Client Cluster pattern
focus on evaluating its impact on the system performance
using a data-partition clustering strategy. By grouping clients
with similar data distributions (e.g., IID vs. non-IID clusters),
this pattern improves the efficiency of the training process
in two main directions. First, clustering clients based on data
similarity mitigates the impact of non-IID data, which reduces

gradient variance and leads to a faster training process. Second,
the training process benefits from enhances in local model con-
vergence, resulting in improved global model accuracy [10].
Our results show that clustered configurations significantly
outperform non-clustered configurations, achieving higher ac-
curacy while also reducing the average round training time.
However, there are some drawbacks that software architects
need to consider when implementing a Client Cluster pattern.
The central server needs additional computational costs and
processing time for clustering clients and quantifying their
relationships, which can impact system efficiency in large
scenarios [10]. Furthermore, clustering requires the server to
access extra client information, increasing the risk of exposing
sensitive data. As future work, we can use aggregated or
anonymized metrics for clustering, thus mitigating the risk of
revealing sensitive data [15].

Message Compressor. Experiments conducted in this paper
show a varying impact of the message compression mecha-
nism, depending on the size of the global model. For smaller
models, as in the n/2 configuration, the compression intro-
duces a notable overhead, resulting in increased communica-
tion time. Here, the computational cost associated with com-
pression outweighs the benefits, as evidenced by consistently
higher times across most rounds. In the n configuration, the
reduction in communication time with compression, although
small, shows an improvement. At this scale, the compression
benefits start being visible and lead to a slight improvement
in communication time. When the model size doubles (e.g., in
the n*2 configuration) the advantage of compression becomes
more evident. In this case, compressing data significantly
shortens the communication time, fully compensating for the
overhead introduced by compression and decompression steps.
Given that the compression (and decompression) process may
introduce additional computational costs, as future work we
plan to introduce a trade-off analysis between the size of the
global model and the overhead introduced by (de)compression
mechanisms, thus enabling compression only when beneficial.

B. Threats to Validity

Besides inheriting all limitations of architectural patterns
and performance analysis [28], [29], our approach exhibits the
following threats to validity [30].

External validity, i.e., generalization of results, is not guar-
anteed, since our experimental setup is subject to certain



limitations due to the available physical resources. Our com-
modity hardware comes with a limited number of physical
processors, thus restricting the actual number of client devices
in our experiments. Consequently, our quantitative analysis
is representative for a small client population, which may
not fully reflect the dynamics of large-scale FL networks.
Nevertheless, experimental results provide valuable insights
into the potential applicability of our methodology.

Internal validity, i.e., settings and parameters used for
performance analysis, is also exposed to potential threats,
since we use numerical values that provide evidence of per-
formance variations for each pattern. For instance, we vary
CPU allocations among clients to highlight the client selector’s
response to differing resource availability. Additionally, by
maintaining consistent input settings across experiments for
each pattern, we minimize misleading effects, ensuring that
observed outcomes could be reliably attributed to specific ar-
chitectural choices. However, determining accurate numerical
values for input parameters is an ever existing challenge in
software performance [31] and other settings could be further
investigated. As an example, clustering clients considering
different configurations (i.e., clients holding different data
distribution types) may reveal varying performance character-
istics. Accordingly, we remark that experiment setup instruc-
tions for testing different input parameter values are publicly
available [13], and software architects can modify parameters
to conduct experiments as needed.

Construct validity, i.e., the statistical validity of the exper-
imental results, is established by repeating each experimental
configuration 10 times, averaging output values, and calculat-
ing the 99% confidence interval to assess the accuracy of the
reported numerical results.

VI. RELATED WORK

Architectural Patterns. The motivation of our work is
supported by a large literature underscoring the importance
of adopting architectural patterns in designing software sys-
tems [32]–[34]. Besides, the software architecture community
recently enforce the adoption of patterns to address design and
operational challenges in machine learning systems [35]–[38].
Washizaki et al. [35] conduct a study to classify architectural
patterns specifically designed for machine learning systems,
providing developers with a framework for selecting suitable
architectural solutions. This work highlights the need for sys-
tematic performance evaluation of these patterns, i.e., the main
contribution of our research. Leest et al. [39] and Takeuchi et
al. [40] present structured approaches to address real-world
design challenges in machine learning systems.

Federated Learning. Compared to centralized machine
learning, FL offers additional advantages regarding efficiency
and privacy aspects [10], [11]. However, FL needs to face
additional architectural challenges, i.e., managing server-client
interactions. Di Martino et al. [11] and Lo et al. [2] pro-
pose reference architectures to design FL systems. These
architectures integrate the patterns discussed in this work,
underscoring the value of structured approaches for improving

system robustness. However, they lack quantitative perfor-
mance evaluation, leaving a gap in the empirical assessment of
proposed systems, as we do in this paper. Ma et al. [41] present
a framework for FL that uses the Client Selector pattern to
identify and exclude unreliable clients, thus preserving system
performance by avoiding faulty updates. Pavlidis et al. [42]
expand on client selection by introducing an algorithm that
prioritizes clients based on computational power and network
conditions, aiming to reduce delays from slower clients while
achieving good model accuracy. Both studies highlight the
advantages of client selection strategies, suggesting that further
research is needed to evaluate their impact on performance,
which aligns with the contribution of our work.

The closest related methodologies are reported hereafter. Lai
et al. [9] propose a FL benchmark engine. Differently from
our investigation, the authors focus on building a standardized
benchmarking suite for FL systems rather than providing
an empirical assessment of how architectural patterns af-
fect system performance. Casalicchio et al. [43] propose a
workbench platform for the performance evaluation of FL
systems implementing patterns proposed by [10]. We initially
considered this work for comparison, but it lacks instructions
on how to reproduce the experiment results and access to the
proposed tool, making the correlation impossible.

To summarize, to the best of our knowledge, most related
studies emphasize the importance of implementing architec-
tural patterns in designing FL systems. Our work addresses
the lack of publicly available methodologies that evaluate their
impact and implications on system performance.

VII. CONCLUSION

This paper supports software architects with an investigation
of how architectural patterns affect the performance of FL
systems, thus providing a quantitative evaluation of a subset of
design decisions. To this end, we implement and evaluate four
architectural patterns deemed relevant for system performance
in the literature [10]. Our findings indicate that architectural
patterns are valid candidates to address FL design challenges,
although pros and cons need to be considered, i.e., the
performance improvement comes at the cost of introducing
overhead to actually apply these patterns. Specifically, the
Client Registry pattern centrally stores client data, enhancing
client management and serving as a foundation for other
patterns. The Client Selector reduces total round time by
exploiting the information collected on clients. The Client
Cluster reduces training time and increases model accuracy by
grouping clients on the basis of data similarities. The Message
Compressor reduces communication time for large models,
although a trade-off between compression overhead and model
size is necessary to achieve optimal efficiency.

In future work, besides addressing all limitations and threats
to validity discussed above, we also plan to extend our ex-
periments by investigating potential combinations of different
patterns, e.g., applying the Client Selector to clustered clients.



ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable feedback. This work has been partially funded by the
MUR-PRIN project 20228FT78M DREAM (modular software
Design to Reduce uncertainty in Ethics-based cyber-physicAl
systeMs), MUR Department of Excellence 2023 - 2027 for
GSSI, and PNRR ECS00000041 VITALITY.

REFERENCES

[1] S. Banabilah, M. Aloqaily, E. Alsayed, N. Malik, and Y. Jararweh,
“Federated Learning Review: Fundamentals, Enabling Technologies, and
Future Applications,” Information Processing & Management, vol. 59,
no. 6, p. 103061, 2022.

[2] S. K. Lo, Q. Lu, H. Paik, and L. Zhu, “FLRA: A Reference Architecture
for Federated Learning Systems,” in European Conference on Software
Architecture (ECSA), vol. 12857, 2021, pp. 83–98.

[3] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A Review of Applications in
Federated Learning,” Computers & Industrial Engineering, vol. 149, p.
106854, 2020.

[4] G. Drainakis, K. V. Katsaros, P. Pantazopoulos, V. Sourlas, and A. Amdi-
tis, “Federated vs. Centralized Machine Learning Under Privacy-Elastic
Users: A Comparative Analysis,” in International Symposium on Net-
work Computing and Applications (NCA), 2020, pp. 1–8.

[5] J. Liu, J. Huang, Y. Zhou, X. Li, S. Ji, H. Xiong, and D. Dou,
“From Distributed Machine Learning to Federated Learning: A Survey,”
Knowledge and Information Systems, vol. 64, no. 4, pp. 885–917, 2022.

[6] L. Perri, “What’s New in the 2023 Gartner Hype Cycle for
Emerging Technologies,” https://www.gartner.com/en/articles/
what-s-new-in-the-2023-gartner-hype-cycle-for-emerging-technologies,
2023, Gartner, Inc.

[7] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A Survey on
Federated Learning,” Knowledge-Based System, vol. 216, p. 106775,
2021.

[8] L. Baresi, G. Quattrocchi, and N. Rasi, “Open challenges in federated
machine learning,” IEEE Internet Comput., vol. 27, no. 2, pp. 20–27,
2023.

[9] F. Lai, Y. Dai, S. Singapuram, J. Liu, X. Zhu, H. Madhyastha, and
M. Chowdhury, “FedScale: Benchmarking Model and System Perfor-
mance of Federated Learning at Scale,” in Proceedings of Machine
Learning Research (PMLR), 2022, pp. 11 814–11 827.

[10] S. K. Lo, Q. Lu, L. Zhu, H.-Y. Paik, X. Xu, and C. Wang, “Architectural
Patterns for the Design of Federated Learning Systems,” Journal of
Systems and Software, vol. 191, p. 111357, 2022.

[11] B. D. Martino, D. D. Sivo, and A. Esposito, “Architectural Patterns for
Software Design Problem-Solving in the Implementation of Federated
Learning Structures Within the E-Health Sector,” in International Con-
ference on Advanced Information Networking and Applications (AINA),
vol. 203, 2024, pp. 347–356.

[12] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, and N. D. Lane,
“Flower: A Friendly Federated Learning Research Framework,” CoRR,
vol. abs/2007.14390, 2020.

[13] I., Compagnucci and R., Pinciroli and C., Trubiani, “Open Science
Artifact: Performance Analysis of Architectural Patterns for Federated
Learning Systems,” https://zenodo.org/records/14539962, 2025.

[14] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in International Conference on Artificial Intelligence and
Statistics (AISTATS), vol. 54, 2017, pp. 1273–1282.

[15] P. Kairouz et al., “Advances and open problems in federated learning,”
Foundations and Trends in Machine Learning, vol. 14, no. 1-2, pp. 1–
210, 2021.

[16] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in International Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2019, pp. 8024–8035.

[17] C. Briggs, Z. Fan, and P. Andras, “Federated Learning with Hierarchical
Clustering of Local Updates to Improve Training on Non-IID Data,” in
International Conference on Neural Network, 2020, pp. 1–9.

[18] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the Convergence
of FedAvg on Non-IID Data,” in International Conference on Learning
Representations, (ICLR), 2020.

[19] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A
Performance Evaluation of Federated Learning Algorithms,” in Inter-
national Workshop on Distributed Infrastructures for Deep Learning
(DIDL), 2018, pp. 1–8.

[20] P. Deutsch and J. Gailly, “ZLIB Compressed Data Format Specification
version 3.3,” RFC, vol. 1950, pp. 1–11, 1996.

[21] M. Adler and J.-L. Gailly, “zlib: A Data Compression Library,” 2024.
[Online]. Available: https://github.com/madler/zlib

[22] A. Krizhevsky, G. Hinton et al., “Learning Multiple Layers of Features
from Tiny Images,” Tech. Rep., 2009.

[23] M. C. Cohen, P. W. Keller, V. S. Mirrokni, and M. Zadimoghaddam,
“Overcommitment in Cloud Services: Bin Packing with Chance Con-
straints,” Management Science, vol. 65, no. 7, pp. 3255–3271, 2019.

[24] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and
L. Tassiulas, “Model Pruning Enables Efficient Federated Learning on
Edge Devices,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 34, no. 12, pp. 10 374–10 386, 2022.

[25] N. W. S. Wardhani, M. Y. Rochayani, A. Iriany, A. D. Sulistyono, and
P. Lestantyo, “Cross-Validation Metrics for Evaluating Classification
Performance on Imbalanced Data,” in International Conference on
Computer, Control, Informatics and its Applications (IC3INA), 2019,
pp. 14–18.

[26] M. Yurochkin, M. Agarwal, S. Ghosh, K. H. Greenewald, T. N. Hoang,
and Y. Khazaeni, “Bayesian Nonparametric Federated Learning of
Neural Networks,” in International Conference on Machine Learning
(ICML), vol. 97, 2019, pp. 7252–7261.

[27] H. Yu, S. Yang, and S. Zhu, “Parallel Restarted SGD with Faster Conver-
gence and Less Communication: Demystifying Why Model Averaging
Works for Deep Learning,” in International Conference on Artificial
Intelligence, (AAAI), 2019, pp. 5693–5700.

[28] A. Shokri, J. C. S. Santos, and M. Mirakhorli, “ArCode: Facilitating
the Use of Application Frameworks to Implement Tactics and Patterns,”
in International Conference on Software Architecture (ICSA), 2021, pp.
138–149.

[29] Y. Zhao, L. Xiao, X. Wang, Z. Chen, B. Chen, and Y. Liu, “Butter-
fly Space: An Architectural Approach for Investigating Performance
Issues,” in International Conference on Software Architecture (ICSA),
2020, pp. 202–213.

[30] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén
et al., Experimentation in Software Engineering, 2012, vol. 236.

[31] A. B. Bondi, Foundations of Software and System Performance Engi-
neering: Process, Performance Modeling, Requirements, Testing, Scala-
bility, and Practice., 2015.

[32] R. C. Martin, “Design Principles and Design Patterns,” Object Mentor,
vol. 1, no. 34, p. 597, 2000.

[33] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed., ser. SEI series in software engineering. Addison-Wesley
Professional, 2012.

[34] Z. Wan, Y. Zhang, X. Xia, Y. Jiang, and D. Lo, “Software Architecture in
Practice: Challenges and Opportunities,” in Conference and Symposium
on the Foundations of Software Engineering, (FSE). ACM, 2023, pp.
1457–1469.

[35] H. Washizaki, H. Uchida, F. Khomh, and Y.-G. Guéhéneuc, “Studying
Software Engineering Patterns for Designing Machine Learning Sys-
tems,” in International Workshop on Empirical Software Engineering in
Practice (IWESEP), 2019, pp. 49–495.

[36] K. A. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečný, S. Mazzocchi, B. McMahan, T. V.
Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards Federated
Learning at Scale: System Design,” in Conference on Machine Learning
and Systems, 2019.

[37] S. J. Warnett and U. Zdun, “Architectural Design Decisions for Ma-
chine Learning Deployment,” in International Conference on Software
Architecture, (ICSA), 2022, pp. 90–100.

[38] E. Ntentos, S. J. Warnett, and U. Zdun, “Supporting Architectural
Decision Making on Training Strategies in Reinforcement Learning
Architectures,” in International Conference on Software Architecture,
(ICSA), 2024, pp. 90–100.

[39] J. Leest, I. Gerostathopoulos, and C. Raibulet, “Evolvability of Machine
Learning-based Systems: An Architectural Design Decision Frame-
work,” in International Conference on Software Architecture (ICSA),
2023, pp. 106–110.

[40] H. Takeuchi, T. Doi, H. Washizaki, S. Okuda, and N. Yoshioka, “En-
terprise Architecture based Representation of Architecture and Design

https://www.gartner.com/en/articles/what-s-new-in-the-2023-gartner-hype-cycle-for-emerging-technologies
https://www.gartner.com/en/articles/what-s-new-in-the-2023-gartner-hype-cycle-for-emerging-technologies
https://zenodo.org/records/14539962
https://github.com/madler/zlib


Patterns for Machine Learning Systems,” in Enterprise Distributed
Object Computing Workshop, (EDOC), 2021, pp. 245–250.

[41] C. Ma, J. Li, M. Ding, K. Wei, W. Chen, and H. V. Poor, “Federated
Learning With Unreliable Clients: Performance Analysis and Mecha-
nism Design,” IEEE Internet Things J., vol. 8, no. 24, pp. 17 308–17 319,
2021.

[42] N. Pavlidis, V. Perifanis, T. P. Chatzinikolaou, G. C. Sirakoulis, and
P. S. Efraimidis, “Intelligent Client Selection for Federated Learning
using Cellular Automata,” CoRR, vol. abs/2310.00627, 2023.

[43] E. Casalicchio, S. Esposito, and A. A. Al-Saedi, “FLWB: a Work-
bench Platform for Performance Evaluation of Federated Learning
Algorithms,” in International Workshop on Technologies for Defense
and Security (TechDefense), 2023, pp. 401–405.


	Introduction
	Background
	Methodology
	 Infrastructure
	Client Registry Architectural Pattern
	Client Selector Architectural Pattern
	Client Cluster Architectural Pattern
	Message Compressor Architectural Pattern

	Experiments
	Performance Analysis: Client Selector
	Performance Analysis: Client Cluster
	Performance Analysis: Message Compressor

	Discussion
	Limitations on Architectural Patterns
	Threats to Validity

	Related work
	Conclusion
	References

